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Abstract—A structured code that improves the previously
best known exponential asymptotic lower bound for the max-
imum cardinality of a pairwise-colliding set of permutations
is presented. The main contribution is an explicit construction
of an infinite recursion of pairwise-colliding sets of partial-
permutations.
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I. INTRODUCTION

Let Sn denote the set of permutations of the numbers
{1, . . . , n}. Two permutations π, σ ∈ Sn are said to collide if
there exists a position i, 1 ≤ i ≤ n, such that |π(i)−σ(i)| = 1.
For a fixed n ≥ 2, a set T ⊂ Sn is said to be pairwise-
colliding if every two distinct permutations σ, π ∈ T collide.
In this article we study the following combinatorial problem
that was initially considered by Körner and Malvenuto [4]:
Determine

T (n) := max{|T | : T is pairwise-colliding, T ⊂ Sn}.

In the next section we will show how the problem naturally
arose from studying (zero-error) graph capacities and permu-
tation codes on them.

A. Background and Motivation

Let G be a (possibly countably infinite) graph whose vertex
and edge sets are respectively denoted by V (G) and E(G).
For positive integer n, the power graph Gn is defined to be
the graph with vertex set V (G)n such that two strings x,y ∈
V (G)n are adjacent in Gn if and only if there exists i ∈
{1, . . . , n} such that {xi,yi} ∈ E(G).

One can interpret adjacency in G as distinguishability
between symbols in V (G). Then adjacency in the power graph
Gn is distinguishability of strings of length n. Clearly the
maximum number of n-letter messages which can be sent such
that they can be decoded with zero probability of error equals
the maximum cardinality of a clique in Gn. This leads to the
classical notion of graph capacity first studied by Shannon [6].
Note that, in Shannon’s equivalent formulation, he considered
the complement graph where the lack of an edge represented
distinguishability and hence he was interested in the size of
the maximum independent set.

Permutation codes are a family of constrained codes that
have been increasingly studied due to their importance in
flash memories. Körner and Malvenuto [4] defined the notion

of permutation capacity of a graph combining the notion
of permutation codes and graph capacities. Let G be an
underlying (usually infinite) graph.

For A ⊂ V (G), let ρ(G,A) be the maximum cardinality of
a clique in the subgraph of G|A| (the power graph) induced by
the set consisting of all strings using each element of A exactly
once. In other words, the vertices of the subgraph can be
indexed by permutations of the elements of A and a maximum
cardinality clique corresponds to a zero-error permutation code
of largest size obtained using the elements of A. For n ≥ 2,
let

ρ(G,n) := max
A⊂V (G),|A|=n

ρ(G,A).

The permutation capacity of the underlying G is defined by

ω(G) := lim sup
n→∞

1

n
log2 ρ(G,n).

The following lemma is immediate.

Lemma 1. If B ⊂ A ⊂ V (G) then ρ(G,B) ≤ ρ(G,A).

The proof follows from the following observation: If one
appends a fixed permutation of the vertices in A \ B to a
clique in the subgraph of G|B| induced by B; we induce a
clique of the same size in the subgraph of G|A| induced by
A.

Consider the infinite line-graph on the integers, i.e. V (L) =
Z and an edge between integers i, j if and only if |i− j| = 1.
Note that for any A ⊂ V (L) of cardinality n, the sub-
graph induced by A is isomorphic to a subgraph of the
subgraph induced by {1, . . . , n}. Hence, from Lemma 1, we
have ρ(L, n) = ρ(L, {1, . . . , n}). Now it is immediate that
ρ(L, n) = T (n), and this is the motivation behind the quantity
studied by Körner and Malvenuto.

The main contribution of this article is an improved lower
bound on ω(L). While the numerical improvement is minor
over the previously best known bound, we believe that the
construction that is used to attain the improvement is rather
different from the existing constructions of pairwise-colliding
sets and could be used for further improvements.

B. Previous Work: Bounds on T (n) and ω(L)

The following argument (reproduced here) yields an upper
bound to T (n) and consequently ω(L).

Proposition 1 (Proposition 4.2 of [4]). T (n) ≤
(

n
bn

2 c
)

2354978-1-5386-9291-2/19/$31.00 ©2019 IEEE ISIT 2019



Proof. Take any pairwise-colliding set T of permutations on
{1, . . . , n} and let Ψ map π ∈ T to the binary string

(π(1) mod 2, π(2) mod 2, . . . , π(n) mod 2) ∈ {0, 1}n.

Any two distinct permutations from T collide (i.e. in particular
there is a location where the parities are different) and hence
must map to different strings, i.e. Ψ is an injection. Further,
any permutation maps to a string with exactly

⌊
n
2

⌋
ones. That

there are
(

n
bn

2 c
)

such strings implies the upper bound.

An immediate corollary of the upper bound on T (n) is that

ω(L) = lim sup
n→∞

1

n
log2 ρ(L, n)

= lim sup
n→∞

1

n
log2 T (n) ≤ 1.

It is conjectured by Körner and Malvenuto [4] that the upper
bound on T (n) can be achieved, that is,

Conjecture 1. T (n) =
(

n
bn

2 c
)
.

Remark 1. This conjecture has been verified until n = 9 and
for n = 10 it has been shown that 251 ≤ T (10) ≤ 252 [2].
The lower bound for T (10) (and the constructions for T (8)
and T (9)) came from an explicit colliding set obtained using
a supercomputer via numerical search.

The above conjecture implies a weaker asymptotic conjec-
ture:

Conjecture 2. ω(L) = 1.

We will now provide some (constructive) lower bounds
on T (n) and ω(L). To explain the constructions, we need
to define a pairwise-colliding set of partial-permutations. A
partial-permutation of {1, . . . , n} is defined as a vector (of
length n) consisting of a subset S from {1, . . . , n} and a
generic (repeatable) symbol ∗ such that the ∗’s can be replaced
by elements from {1, . . . , n} \ S to form a permutation of
{1, . . . , n}. We call the elements in S to be the set of revealed
entries of the partial-permutation. For instance, (1 ∗ ∗) is
a partial-permutation of S3 since we can replace the ∗’s to
form either of the permutations (1 2 3) or (1 3 2); and 1 is
the revealed entry.

A set P consisting of partial-permutations of {1, . . . , n}
is said to be pairwise-colliding if for every distinct pair of
partial-permutations there exists a position i, 1 ≤ i ≤ n, such
that π(i) and σ(i) are revealed entries and |π(i)− σ(i)| = 1.

The canonical construction of valid codes is to consider a
pairwise-colliding set of partial-permutations, and then recur-
sively replace the ∗’s in the partial-permutations by pairwise-
colliding set of permutations and hence obtain a recursion.
The key is to find an initial pairwise-colliding set of partial-
permutations which leads to lower bounds on T (n) and ω(L).

The constructions proposed in literature have been to exhibit
a small finite pairwise-colliding set of partial-permutations,
where the pairwise-collision can be checked by inspection. In
contrast we devise a technique of systematically obtaining an
arbitrary-sized pairwise-colliding set of partial-permutations.

Using this technique we are able to modify some existing
constructions to improve the lower bound on ω(L).

1) Lower Bounds on T (n) and ω(L): We illustrate some
previous constructions of pairwise-colliding set of partial-
permutations and the implications on T (n) and ω(L) below.
We already know that T (n) =

(
n
bn

2 c
)

for n ≤ 9 as stated
earlier.

Construction A [4]: An elementary example of a recursion
is to consider the following set of size two

1 ∗ ∗ · · · ∗
2 ∗ ∗ · · · ∗

We replace the ∗’s in the first row by a colliding set from
{2, . . . , n} and the ∗’s in the second row by a colliding set
from {1, 3, . . . , n}, to form a new subset T of permutations
of {1, . . . , n}. Note that T is pairwise-colliding. By induction,
the ∗’s in the first row can be replaced by a set of size T (n−1).
Since the induced sub-graph by {1, 3, . . . , n} has a sub-graph
isomorphic to {1, . . . , n − 2}, the ∗’s in the second row can
be replaced by a colliding set of size T (n− 2). Hence we get
that

T (n) ≥ T (n− 1) + T (n− 2), ∀n ≥ 2.

This yields ω(L) ≥ log2
1+
√
5

2 ≥ 0.694.

Construction B: The following set of size 3 yields a larger
colliding set. Consider a set of partial-permutations of the form

1 2 ∗ ∗ · · · ∗
2 ∗ 1 ∗ · · · ∗
∗ 1 2 ∗ · · · ∗

The ∗’s in each of the three rows can be replaced by a
colliding set from {3, . . . , n}, yielding a pairwise-colliding set
of {1, . . . , n}. Note that, this yields

T (n) ≥ 3T (n− 2), ∀n ≥ 3

and hence ω(L) ≥ log2

√
3 ≥ 0.792.

Construction C [1]: Another example appearing in
Brightwell et al. [1] is to consider the set of partial-
permutations obtained by taking all cyclic shifts of the two
sequences

1 3 4 2 ∗ ∗ ∗
3 5 2 1 4 ∗ ∗

It can be verified that the resultant 14-element set of partial-
permutations is pairwise-colliding. This implies that

T (n) ≥ 7T (n− 4) + 7T (n− 5), ∀n ≥ 5

and hence ω(L) ≥ log2 x ≥ 0.8599, where x is the unique
root of x5 − 7x− 7 = 0 in [1, 2].

Construction D [1]: This is the best lower bound for ω(L)
known prior to this paper. The construction was obtained using
a computer search by Brightwell et al. (Proposition 19 of [1]).
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They obtained the following 17-element pairwise-colliding set
of partial-permutations

5 2 3 1 4 ∗ ∗ ∗ ∗ · · · ∗
5 ∗ 2 3 1 4 ∗ ∗ ∗ · · · ∗
5 4 ∗ 2 3 1 ∗ ∗ ∗ · · · ∗
5 1 4 ∗ 2 3 ∗ ∗ ∗ · · · ∗
5 3 1 4 ∗ 2 ∗ ∗ ∗ · · · ∗
5 3 2 4 1 ∗ ∗ ∗ ∗ · · · ∗
5 ∗ 3 2 4 1 ∗ ∗ ∗ · · · ∗
5 1 ∗ 3 2 4 ∗ ∗ ∗ · · · ∗
5 4 1 ∗ 3 2 ∗ ∗ ∗ · · · ∗
∗ 2 4 1 ∗ 3 ∗ ∗ ∗ · · · ∗
4 ∗ ∗ 2 3 ∗ 1 ∗ ∗ · · · ∗
4 3 ∗ ∗ 2 ∗ 1 ∗ ∗ · · · ∗
4 ∗ ∗ 1 3 2 ∗ ∗ ∗ · · · ∗
4 3 ∗ ∗ ∗ 1 2 ∗ ∗ · · · ∗
6 2 3 ∗ 4 ∗ 1 5 ∗ · · · ∗
6 4 3 ∗ ∗ 1 2 5 ∗ · · · ∗
6 2 5 1 ∗ 3 ∗ 4 ∗ · · · ∗

.

This set yields the recursion

T (n) ≥ 5T (n− 4) + 9T (n− 5) + 3T (n− 6), ∀n ≥ 8

which then implies

ω(L) ≥ log2 x ≥ 0.8604

where x is the unique root of x6− 5x2− 9x− 3 = 0 in [1, 2].

II. MAIN RESULTS

We improve the lower bound for ω(L) by proposing a
simpler construction. This construction is based on a slightly
different primitive and not by a finite recursion like in previous
cases. Our primitive allows us to have an infinite-length
recursion for T (n). To explain our approach we start from
Construction B and obtain the following improvement.

Proposition 2. ω(L) ≥ 0.8495

Notice that this represents a significant improvement over
the bound of 0.792 yielded by Construction B. We start from
the following colliding set of partial-permutations given by
Construction B:

1 2 ∗ ∗ · · · ∗
2 ∗ 1 ∗ · · · ∗
∗ 1 2 ∗ · · · ∗

Replace the largest entry, 2, in the last row by ∗ as shown
below. Note that the red-colored row still collides with the first
row but no longer necessarily collides with the blue-colored
row.

1 2 ∗ ∗ · · · ∗
2 ∗ 1 ∗ · · · ∗
∗ 1 ∗ ∗ · · · ∗

We split the red row into two partial-permutations with loca-
tions of one more entry revealed to get a new colliding set of
partial-permutations as shown below.

1 2 ∗ ∗ ∗ · · · ∗
2 ∗ 1 ∗ ∗ · · · ∗
3 1 ∗ 2 ∗ · · · ∗
∗ 1 2 3 ∗ · · · ∗

If we stop with this colliding set of partial-permutations we
will obtain

T (n) ≥ 2T (n− 2) + 2T (n− 3), ∀n ≥ 4.

We will now repeat the entire process of splitting the last
partial-permutation into two partial-permutations with loca-
tions of one more entry revealed as follows. For ease of
exposition we will explain this split using the coloring as done
before. First, we recolor the above set as follows:

1 2 ∗ ∗ ∗ · · · ∗
2 ∗ 1 ∗ ∗ · · · ∗
3 1 ∗ 2 ∗ · · · ∗
∗ 1 2 3 ∗ · · · ∗

Again observe that the only pair of partial-permutations that
does not collide is the red-colored one and the blue-colored
one. We will split the red-colored one into two further ones
by revealing the positions of their next entry such that both
of these collide with the blue-colored one. The split of the
last red-colored row by the same procedure as mentioned
previosuly yields the colliding set of partial-permutations:

1 2 ∗ ∗ ∗ ∗ · · · ∗
2 ∗ 1 ∗ ∗ ∗ · · · ∗
3 1 ∗ 2 ∗ ∗ · · · ∗
4 1 2 ∗ 3 ∗ · · · ∗
∗ 1 2 3 4 ∗ · · · ∗

If we stop with this colliding set of partial-permutations we
will obtain

T (n) ≥ 2T (n− 2) + T (n− 3) + 2T (n− 4), ∀n ≥ 5.

This process can clearly be continued indefinitely. For
illustration, the next split of the last row yields:

1 2 ∗ ∗ ∗ ∗ ∗ · · · ∗
2 ∗ 1 ∗ ∗ ∗ ∗ · · · ∗
3 1 ∗ 2 ∗ ∗ ∗ · · · ∗
4 1 2 ∗ 3 ∗ ∗ · · · ∗
5 1 2 3 ∗ 4 ∗ · · · ∗
∗ 1 2 3 4 5 ∗ · · · ∗

Repeating this split of the last row, if we stop at the iteration
that has the entries {1, . . . , k} revealed in the last two rows,
then we obtain

T (n) ≥ 2T (n− 2) +

k−1∑
j=3

T (n− j) + 2T (n− k)

for all n ≥ k + 1. This construction implies that

ω(L) ≥ log2(x),
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where x is the unique root of xk−2xk−2−
∑k−1

j=3 x
k−j−2 = 0

in (1, 2]. Since k ≥ 3 is arbitrary, letting k → ∞ we obtain
that

ω(L) ≥ log2(x) ≥ 0.8495.

where x is the unique root of 1−2x−2− x−3

1−x−1 = 0 in (1, 2].
The structure of the infinite collection of pairwise-colliding

partial-permutations, for illustration, is as follows:

1 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ · · ·
2 ∗ 1 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
3 1 ∗ 2 ∗ ∗ ∗ ∗ ∗ · · ·
4 1 2 ∗ 3 ∗ ∗ ∗ ∗ · · ·
5 1 2 3 ∗ 4 ∗ ∗ ∗ · · ·
6 1 2 3 4 ∗ 5 ∗ ∗ · · ·
7 1 2 3 4 5 ∗ 6 ∗ · · ·
...

...
...

...
...

...
...

...
...

. . .

Theorem 1. It holds that

T (n) ≥ 5 (T (n− 4) + T (n− 5) + · · ·+ T (1))

for n ≥ 6, which implies

ω(L) ≥ 0.867

Proof. Consider the five infinite matrices listed below and
denote them as M0,M1,M2,M3,M4.

1 2 4 3 ∗ ∗ ∗ ∗ ∗ · · ·
1 2 5 ∗ 3 4 ∗ ∗ ∗ · · ·
1 2 6 4 3 ∗ 5 ∗ ∗ · · ·
1 2 7 4 3 5 ∗ 6 ∗ · · ·
1 2 8 4 3 5 6 ∗ 7 · · ·
...

...
...

...
...

...
...

...
...

. . .


M0

∗ 1 2 4 3 ∗ ∗ ∗ ∗ · · ·
3 1 2 5 ∗ 4 ∗ ∗ ∗ · · ·
3 1 2 6 4 ∗ 5 ∗ ∗ · · ·
3 1 2 7 4 5 ∗ 6 ∗ · · ·
3 1 2 8 4 5 6 ∗ 7 · · ·
...

...
...

...
...

...
...

...
...

. . .


M1

3 ∗ 1 2 4 ∗ ∗ ∗ ∗ · · ·
∗ 3 1 2 5 4 ∗ ∗ ∗ · · ·
4 3 1 2 6 ∗ 5 ∗ ∗ · · ·
4 3 1 2 7 5 ∗ 6 ∗ · · ·
4 3 1 2 8 5 6 ∗ 7 · · ·
...

...
...

...
...

...
...

...
...

. . .


M2

4 3 ∗ 1 2 ∗ ∗ ∗ ∗ · · ·
5 ∗ 3 1 2 4 ∗ ∗ ∗ · · ·
6 4 3 1 2 ∗ 5 ∗ ∗ · · ·
7 4 3 1 2 5 ∗ 6 ∗ · · ·
8 4 3 1 2 5 6 ∗ 7 · · ·
...

...
...

...
...

...
...

...
...

. . .


M3

2 4 3 ∗ 1 ∗ ∗ ∗ ∗ · · ·
2 5 ∗ 3 1 4 ∗ ∗ ∗ · · ·
2 6 4 3 1 ∗ 5 ∗ ∗ · · ·
2 7 4 3 1 5 ∗ 6 ∗ · · ·
2 8 4 3 1 5 6 ∗ 7 · · ·
...

...
...

...
...

...
...

...
...

. . .


M4

Note that the infinite matrices M1,M2,M3,M4 are ob-
tained by cyclically rotating the first five columns of M0.

A permutation in Sn is said to be consistent with a given
partial-permutation if the permutation matches all the revealed
entries of the partial-permutation. We will construct a set
of pairwise-colliding permutations in Sn by starting with
a 5(n− 4)× n matrix of partial-permutations obtained by
taking the top n − 4 rows and leftmost n columns of each
of the infinite matrices Mi for i = 0, . . . , 4.

We first show that any permutation in Sn that is consistent
with a partial-permutation in Mi is colliding with any per-
mutation that is consistent with a partial-permutation in Mj ,
for 0 ≤ i < j ≤ 4. To establish this consider the five three-
element sets N0,N1,N2,N3,N4 of partial-permutations:

1 2 4 3 ∗ ∗ ∗ · · · ∗
1 2 5 ∗ 3 4 ∗ · · · ∗
1 2 ∗ 4 3 ∗ ∗ · · · ∗

N0

∗ 1 2 4 3 ∗ ∗ · · · ∗
3 1 2 5 ∗ 4 ∗ · · · ∗
3 1 2 ∗ 4 ∗ ∗ · · · ∗

N1

3 ∗ 1 2 4 ∗ ∗ · · · ∗
∗ 3 1 2 5 4 ∗ · · · ∗
4 3 1 2 ∗ ∗ ∗ · · · ∗

N2

4 3 ∗ 1 2 ∗ ∗ · · · ∗
5 ∗ 3 1 2 4 ∗ · · · ∗
∗ 4 3 1 2 ∗ ∗ · · · ∗

N3

2 4 3 ∗ 1 ∗ ∗ · · · ∗
2 5 ∗ 3 1 4 ∗ · · · ∗
2 ∗ 4 3 1 ∗ ∗ · · · ∗

N4

Note that any permutation in Sn that is consistent with a
partial-permutation in Mi is also consistent with a partial-
permutation in Ni, for i = 0, . . . , 4. One can verify that any
partial-permutation in Ni collides, on the revealed entries,
with any partial-permutation in Nj , for 0 ≤ i < j ≤ 4.
This establishes that any permutation in Sn that is consistent
with a partial-permutation in Mi collides with any permuta-
tion that is consistent with a partial-permutation in Mj , for
0 ≤ i < j ≤ 4.

Therefore to complete our construction of the set of
pairwise-colliding permutations in Sn we first focus on con-
structing a set of pairwise-colliding permutations that are
consistent with partial-permutations in M0.

Now consider the infinite matrix M0

1 2 4 3 ∗ ∗ ∗ ∗ ∗ ∗ · · ·
1 2 5 ∗ 3 4 ∗ ∗ ∗ ∗ · · ·
1 2 6 4 3 ∗ 5 ∗ ∗ ∗ · · ·
1 2 7 4 3 5 ∗ 6 ∗ ∗ · · ·
1 2 8 4 3 5 6 ∗ 7 ∗ · · ·
...

...
...

...
...

...
...

...
...

...
. . .

and let An denote the truncated matrix obtained by taking the
top n− 4 rows and leftmost n columns.

For each i ∈ {1, . . . , n− 4} take a set of largest cardinality
Ti ⊂ Si of pairwise-colliding permutations and let Ui ⊂ Sn
be the set of permutations obtained by replacing the ∗’s (from
left to right) by

π(1) + i+ 3, π(2) + i+ 3, . . . , π(n− 3− i) + i+ 3
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in the i-th row of An for each π ∈ Ti. Clearly,
• Ui is pairwise-colliding and is of cardinality T (n−3−i),

1 ≤ i ≤ n− 4,
• if π ∈ Ui and σ ∈ Ui+1, for 1 ≤ i ≤ n− 5 then

π(3) + 1 = i+ 4 = σ(3)

and hence π, σ collide,
• if π ∈ U1 and σ ∈ Uj with j ≥ 3 then

π(4) + 1 = 4 = σ(4)

and hence π, σ collide,
• if π ∈ Ui and σ ∈ Uj with j − 2 ≥ i > 1 then

π(i+ 4) + 1 = i+ 3 = σ(i+ 4)

and hence π, σ collide.
Thus V0 :=

⋃n−4
i=1 Ui is a set of

∑n−4
i=1 T (i) pairwise-colliding

permutations in Sn. Note that each permutation in V0 is
consistent with some partial-permutation in M0.

Now similarly for i = 1, . . . , 4, from the infinite matrix
Mi, we can construct a set Vi of

∑n−4
i=1 T (i) pairwise-

colliding permutations in Sn such that each permutation in
Vi is consistent with some partial-permutation in Mi. Taking
the union of the Vi’s (i = 0, . . . , 4) gives a set of 5

∑n−4
i=1 T (i)

pairwise-colliding permutations in Sn. Thus we obtain that

T (n) ≥ 5 (T (n− 4) + T (n− 5) + · · ·+ T (1))

for n ≥ 6, as desired.
It remains to deduce the lower bound for ω(L). Define a

sequence C(n) by
C(n) := T (n)

for 1 ≤ n ≤ 5 and

C(n) := 5 (C(n− 4) + C(n− 5) + · · ·+ C(1))

for n ≥ 6. By induction, we can see that T (n) ≥ C(n) for
every n ≥ 1. From standard recursion analysis we see that

lim
n→∞

C(n)1/n = α

where α is the unique root for x 7→ x4−x3−5 in [1, 2]. This
implies that

ω(L) = lim sup
n→∞

1

n
log2 T (n) ≥ log2 α ≥ 0.867

and shows the lower bound.

III. CONCLUSION

We improve on the existing lower bound for ω(L), the
asymptotic exponent for the maximum cardinality T (n) of a
pairwise-colliding set of permutations of {1, . . . , n}. We used
an infinite recursive structure for the study of this problem and
it is very likely that there are other similar recursive structures
that would lead to further improvements. This method gives
rise to a slightly different way of code constructions akin to
variable length codes over fixed length codes.
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