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Abstract—Let X be a discrete random variable with In many interesting situations, including Example
support S and f : S — S’ be a bijection. Then it is well- 1.1 given below, the underlying random variables are
known that the entropy of X is the same as the entropy mivires of discrete and continuous random variables.

of f(X). This entropy preservation property has been L . . .
well-utilized to establish non-trivial properties of discrete Such systems exhibit natural bijective properties which

stochastic processes, e.g. queuing process [1]. Entropy asillow one to obtain non-trivial properties of the system
well as entropy preservation is well-defined only in the via”entropy preservation” arguments. However, the main
context of purely discrete or continuous random variables. dijfficulty in establishing such arguments is the lack of
However for a mixture of discrete and continuous random ~tion of entropy for mixed random variables and ap-
variables, which arise in many interesting situations, the . . " .
notions of entropy and entropy preservation have not been proprlqte sufficient cqndltlons for entr(_)py_ preservation.
well understood. In this paper, we will extend the definition of entropy
In this paper, we extend the notion of entropy in for random variables which are mixed pair of discrete
a natural manner for a mixed-pair random variable, a and continuous variables as well as obtain sufficient
pair of random variables with one discrete and the other conditions for preservation of entropy. Subsequently, we

continuous. Our extensions are consistent with the existing il id . Ustificati f th tical
definitions of entropy in the sense that there exist natural will provide a rigorous justmcaton of mathematica

injections from discrete or continuous random variables identities that follow in the example below.

into mixed-pair random variables such that their entropy Example 1.1 (Poisson Splitting)Consider a Poisson

remains the same. This extension of entropy allows us processp, of rate\. Split the Poisson process into two

to obtain sufficient conditions for entropy preservation .1y nrocesse®, and P, as follows: for each point of

in mixtures of discrete and continuous random variables . . S .

under bijections. P, toss an mdepen_der_lt coin of bigsif coin turns up
The extended definition of entropy leads to an entropy heads then the point is assigned 7, else toP». It

rate for continuous time Markov chains. As an application, is well-known thatP; and P, are independent Poisson

we recover a known probabilistic result related to Poisson processes with rate¥p and A(1 — p) respectively.

process. We strongly believe that the frame-work developed : : .
in this paper can be useful in establishing probabilistic Entropy rate of a Poisson process with ratis known

properties of complex processes, such as load balancing!® P€ x(1 — logy) bits per second. That is, entropy
systems, queuing network, caching algorithms. rates of P, Py, and P, are given by\(1 — log\),
Ap(1—log Ap) and\(1—p)(1—log A(1—p)) respectively.
Further observe that the coin of biasis tossed at

a rate A and each coin-toss has an entropy equal to
1. INTRODUCTION —plogp — (1 — p)log(l — p) bits.

The notion of entropy for discrete random variables It is clear that there is a bijection between the tuple
as well as continuous random variables is well definetP, coin-toss process) and the tupl®,(P;). Observe
Entropy preservation of discrete random variable und#tat the joint entropy rate of the two independent baby-
bijection map is an extremely useful property. For exprocesses are given by their sum. This leads to the
ample, Prabhakar and Gallager [1] used this entrop§llowing “obvious” set of equalities.
preservation property to ob'taln an alternate p'roof of thf R(P1,Pa) = Her(P1) + Hir(Ps)
known result that Geometric processes are fixed points

Index Terms— entropy, bijections

under certain queuing disciplines. = Ap(1 —log Ap) +A(1 = p)(1 — log A(1 —p))
= A1 —1logA) + A(—plogp — (1 — p)log(1 — p))
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WA. B. Prabhakar is with the EE and CS departments at Stan- Hpr(P) + AM(—plogp — (1 —p)log(1 - p)).
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rate of the original Poisson process and the entropy ratéth respect to the Lebesgue measure. These probability
of the coin tosses. However the presence of differentiadeasures can be characterized by a non-negative density
entropy as well as discrete entropy prevents this intefunction f(z) that satisfies[, f(x)dz = 1. The entropy
pretation from being rigorous. In this paper, we sha(differential entropy) of a continuous random variable is
provide rigorous justification to the above equalities. defined by the integral

A. Organization hY) = —/ f(y)log f(y)dy.

The organization of the paper is as follows. In section "
2, we introduce the mixed-pair of random variables and The entropy of a continuous random variable is not
extend the definition of entropy for the mixed-pair ohon-negative, though it satisfies several of the other prop-
random variables. We will also derive some propertiesrties of the discrete entropy function. Due to negativity,
for the extended definition of entropy that agree witldifferential entropy clearly does not have interpretation
the properties of entropy for the discrete and continuow$ maximal compressibility. However, it does have the
random variables. In section 3, we will establish suffinterpretation of being the limiting difference between
cient conditions under which bijections preserve entrogite maximally compressed quantization of the random
for mixed-pair random variables and random vectors. hariable and an identical quantization of an independent
section 4, we will define the entropy rate of a continuoud|0, 1]* random variable [3] as the quantization resolu-
time Markov chain using the definition of entropy fortion goes to zero. Hence the term differential entropy
mixed-pair random variables. In the subsequent sectian usually preferred to entropy when describing this
we use these definitions to recover an old result (Poissoamber.
splitting). We conclude in section 6.

2. DEFINITIONS AND SETUP B. Our Setup

This section provides technical definitions and sets up|n this paper, we are interested in a set of random
the frame-work for this paper. First, we present somgyriables that incorporate the aspects of both discrete

preliminaries. and continuous random variables. Lét= (X,Y) be
a measurable mapping from the spd€k F,P) to the
A. Preliminaries space(R x R, Bg x Bg). Observe that this mapping

Consider a measure spat®@, F,P), with P being a induces a probability measune; on 't.he spacgR x
probability measure. LefR, Br) denote the measurableR: Br x Br) as well as two probability measuresy
space orR with the Borelo-algebra. A random variable @d 1y on (R, Bg) obtained via the projection of the
X is a measurable mapping frofhto R. Let 1 x denote Measurg.z.
the induced probability measure ¢R, Bg) by X. We Definition 2.1 (Mixed-Pair):Consider a random vari-
call X asdiscrete random variablé there is a countable ablesZ = (X,Y). We call Z' a mixed-pair if X is a
subset{z1, z,,...} of R that forms a support for the discrete random variable whilé is a continuous random

measurg.x. Letp; = P(X = z;) and note tha}_, p; = variable. That is, the support gfz is on the product

1. spaceS x R, with S = {x,z2,...} is a countable
The entropy of a discrete random variable is definegibset ofR. That isS forms a support fop.x while 1y
by the sum is absolutely continuous with respect to the Lebesgue
measure.
H(X) ==> _pilogpi. Observe thatZ = (X,Y) induces measures

{p1, o, ....} that are absolutely continuous with respect

Note that this entropy is non-negative and has sevekgl the Lebesgue measure, wheng(A) = P(X =
well knoyvn. properties. One nat.ural interpretatiqn_ pf thig}hy € A), for every A € Bg. Associated with these
number is in terms of the maximum compressibility (ifmeasures.;, there are non-negative density functions
bits per symbol) of an i.i.d. sequence of the random
variables, X (cf. Shannon’s data compression theorem -y 1] represents a random variable that is uniformly distributed
[2]). on the interval [0,1]

A random variableY’. defined on(Q F IP’) is said to TFor the rest of the paper we shall adopt the notation that ran-
b . d ’ iablié th ’ ’b ,b'l' dom variablesX; represent discrete random variablé$, represent

e acontlr_1u0us random Va”a_ the probabi 'ty_mea' continuous random variables auf] represent mixed-pair of random
sure, uy, induced on(R, Bg) is absolutely continuous variables.



gi(y) that satisfy Definition 2.4 (Entropy of a mixed-pair)The
entropy of a good mixed-pair random variable is defined

Z/Rgi(y)dy =1 by

Let us definep; = [, gi(y)dy. Observe thatp;’s
are non-negative numbers that satisfy,p; = 1 and
corresponds to the probability measurg,. Further
9(y) = >_, gi(y) corresponds to the probability measur
Hy - Let

HZ) ==Y [ s osatdr. (22

Definition 2.5 (Vector of Mixed-Pairs)Consider a
éandom vectonZy, ..., Zq) = {(X1, Y1), ..., (X4, Ya) }-
We call (Z4,...,Z;) a vector of mixed-pairs if the
1 support ofy(z, . z,) is on the product spacg’ x R,
E,gi(y) whereS? c R? is a countable set. That i§? forms the
support for the probability measure x, .. x, while
the measureyy, .. y,) is absolutely continuous with
Hespect to the Lebesgue measureRsh

Definition 2.6 (Good Mixed-Pair Vector )A vector
of mixed-pair random variable$7, ..., Z;) is called

1>

gi(y)

be the probability density function &f conditioned on
The following non-negative sequence is well define
for everyy € R for which g(y) > 0,

A(y) = gi(y)’ i>1 good if the following condition is satisfied:
9(y)
Now g(y) is finite except possibly on a set, of measure Z . |gx(y) log gx(y)|dy < oo, (2.3)
zero. Fory € A°, we have thafy", p;(y) = 1; pi(y) xesd YER

corresponds to the probability thaf = z; conditioned \yhere gx(y) is the density of the continuous random
onY = y. It follows from definitions ofp; and p;(y) vectory“ conditioned on the event thaf? — x.
that Analogous to Lemma 2.3, the following conditions
pi = /pi(y)g(y)dy guarantee that a vector of mixed-pair random variables
R is good.

Definition 2.2 (Good Mixed-Pair )A mixed-pair Lemma 2.7:The following conditions are sufficient
random variableZ = (X,Y) is called good if the for a mixed-pair random variable to be a good pair:
following condition is satisfied: (@) Random variabler'? possess a finite!® moment

for somee > 0, i.e.
Z/R |9i(y) log gi(y)|dy < oo. (2.1)

| - | M= [ Iylatay < .

Essentially, the good mixed-pair random variables Rd
possess the property that when restricted to any @f) There existss > 0 such thatg(y) satisfies
the X values, the conditional differential entropy of
Y is well-defined. The following lemma provides a 145 g

. - L ) . g(y) y < 00.
simple sufficient conditions for ensuring that a mixed- R
pair variable is good. . . d -
Lemma 2.3:The following conditions are sufficient © The discrete random variable® has finite entropy,

for a mixed-pair random variable to be a good pair: :s%;f_ZTXﬁSed p:;gffsx s<|rr?:I)ar 0 that of Lemma 2.3
(@) Random variablé” possess a finite/* moment for i P |

somee > 0. i.e and is omitted. [ ]
¢ T In rest of the paper, all mixed-pair variables and
M, = / ly|<g(y)dy < oo. vectors are assumed to beod i.e. assumed to satisfy
R the condition (2.1).

(b) There existsy > 0 such thatg(y) satisfies Definition 2.8 (Entropy of a mixed-pair vector):

The entropy of a good mixed-pair vector of random
148 py g p
/Rg(y) dy < oo. variables is defined by

(c) The discrete random variabl€ has finite entropy,
i.e. — 3. pilogp; < co. H(Z)=- /Rd 9x(y) log gx(y)dy. (2.4)

€Sd
Proof: The proof is presented in the appendim "



Definition 2.9 (Conditional entropy)Given a pair of Consider the mapping. : Y — Z = (Xo,Y) whereX|
random variableq 71, Z,), the conditional entropy is is the constant random variable, $&X, = 1) = 1. Ob-
defined as follows serve thaty(y) = ¢1(y) and that the paiZ = (X,,Y)

_ is a good mixed-pair that satisfiéfZ) = h(Y).
H(21|22) = H(Z1, Z2) — H(Zy). Thus o4 and o. are injections from the space of
It is not hard to see thal(Z,|Z,) evaluates to continuous and discrete random variables into the space

of good mixed-pairs that preserve the entropy function.
Z 1 gzl,zQ(ylay2)d d
- 2gx1,m2(y1;y2) og — - ayiays.
R

9zs (y2)

x1,T2
Definition 2.10 (Mutual Information)Given a pair

of random variablegZ;, Z5), the mutual information
is defined as follows

D. Discrete-Continuous Variable as Mixed-Pair

Consider a random variaBlel/ whose support is
combination of both discrete and continuous. That is, it
satisfies the following properties: (i) There is a countable
1(Zy;Z5) = H(Z,) + H(Zy) — H(Z1, Zo). set (possibly finitep = {x1, 22, ...} such thatuy (x;) =
p; > 0; (i) measureiy with an associated non-negative
function g(y) (absolutely continuous w.r.t. the Lebesgue
3 / Gor s (1, o) log 9222 (y1,2) dysdyo. measure), and (iii) the following holds:

R? 91 (Y1) 9z, (Y2)

L /Rg(w dy+3 pi=1.

Using the fact thafl + logx < = for z > 0 it can be
shown thatl(Z;; Z5) is non-negative.

The mutual information evaluates to

Thus, the random variablE either takes discrete values
x1,T9,... With probabilities pi,ps,... or else it is
C. Old Definitions Still Work distributed according to the density functi%g(y);
. S ¥vherep = Y. p;. Observe thal’ has neither a countable
We will now present injections from the space o A . .
. : . . support nor is its measure absolutely continuous with
discrete (or continuous) random variables into the space
: . . respect to Lebesgue measure. Therefore, though such
of mixed-pair random variable so that the entropy of the : : .
. ; . ) ) rtandom variables are encountered neither the discrete
mixed-pair random variable is the same as the discrefe h . . .
(o continuous) entropy entropy nor the co'ntln_uqus entropy is appropriate. _
' To overcome this difficulty, we will treat such vari-
Injection: Discrete into Mixed-PairLet X be a discrete ables as mixed-pair variables by appropriate injection of
random variable with finite entropy. Lefpi,p»,...} such variables into mixed-pair variables. Subsequently,
denote the probability measure associated wiithCon- we will be able to use the definition of entropy for
sider the mapping; : X — Z = (X,U) whereU is mixed-pair variables.
an independent continuous random variable distribut
uniformly on the interval [0,1]. Fo#, we haveg;(y) =

p; for y € [0,1]. Therefore

H(Z) ==Y [ 9 losai(v) dy

?r%ection: Discrete-Continuous into Mixed-Paitet V/
be a discrete-continuous variable as considered above.
Let the following two conditions be satisfied:

—> pilogp; < o0 and/ 9(y)|log §(y)| dy < oo.
i R

1
= Z/ —pilogpidy Consider the mapping,, : V — Z = (X,Y) described
: 0 . o
’ as follows: WhenV takes a discrete value;, it is
= —Zpi log pi mapped on to the pai(z;,u;) where u; is chosen
i independently and uniformly at random &, 1]. When
= H(X) < oo. V does not take a discrete value and say takes value
Therefore we see that(Z) = H(X). it gets mapped to the paitxg,y) wherezy # x;, Vi.

One can think ofry as an indicator value thaf takes
Injection: Continuous into Mixed-PaiLet Y be a con- when it is not discrete. The mixed-pair variabte has
tinuous random variable with a density functigfy) that its associated functiongy(v), 91 (y), ...} whereg;(y) =

satisfies

fNormally such random variables are referred to as mixed random

g(y)|log g(y)| dy < . variables.

R



pi, y € [0,1],4 > 1 and go(y) = g(y). The entropy of z3; X [y2, y2+dy2). The measure af; x [y1,y1 +dy1)

Z as defined earlier is is ~ g;(y1)|dy:1|, while measure ofy; x [y2,y2 + dy2)
is ~ h;(y2)|dy2|. Since distribution ofZ, is induced by
H(Z) = - Z/Rgi(y) log gi(y) dy the bijection fromZ;, we obtain
) dyl
=~ pilogp; - /R 3(y) log 3(y) dy. 9:(sn) |5 | = i(w2)- (3.1)

Remark 2.11:In the rest of the paper we will treat” UTter fromys = Fe(w1;,51) we also have,

every random variable that is encountered as a mixed- dya _ dFe(w1i, 1) (3.2)
pair random variable. That is, a discrete variable or a dyr dy, ) '
continuous variable would be assumed to be injectgthese immediately imply a sufficient condition under
into the space of mixed-pairs using the mapor oc, hich bijections between mixed-pair random variables

respectively. imply that their entropies are preserved.
Lemma 3.1:If ‘%ﬂ“’yl) = 1 for all points
3. BIJECTIONS ANDENTROPY PRESERVATION (T1,51) € St x R then(]IliI(Zl) — H(Z,)

In this section we will consider bijections between  Proof: This essentially follows from the change
mixed-pair random variables and establish sufficienf variables and repeated use of Fubini's theorem (to
conditions under which the entropy is preserved. Waterchange the sums and the integral). To apply Fubini’s
first consider the case of mixed-pair random variablekeorem, we use the assumption that mixed-pair random
and then extend this to vectors of mixed-pair randowariables aregood Observe that,

variables.
H(Z:) = —Zégi(yl)loggi(y1)dy1

A. Bijections between Mixed-Pairs
yectl W X ! dF.(x1i,y1)

~
Iz

) dy2

)

Consider mixed-pair random variablgs = (X1, ;) -> /R hj(y2) log (hj(yz) s
and Z; = (Xo,Ys). Specifically, letS; = {z1;} J
and Sy = {w9;} _be the countable (possibly finite) () 7Z/hj(y2)loghj(y2)dy2
supports of the discrete measures, and ux, such 7 /R
that px, (z1;) > 0 and px,(x2;) > 0 for all i € S _

) N . . =H(Zy).

and j € S,. Therefore a bijection between mixed-pair

. ! L (3.3)
variablesZ; andZ, can be viewed as bijections between
S; x R andS; x R. Here(a) is obtained by repeated use of Fubini’s theorem

Let F : S; xR — S, xR be a bijection. Giver#, this along with (3.1) andb) follows from the assumption of
bijection induces a mixed-pair random varialifle. We the Lemma that%l =1. [ ]

restrict our attention to the case whéhis continuous
and differentiablé. Let the induced projections bE; : B Some Examples
Si xR — S, andF, : S; x R — R. Let the associated
projections of the inverse map—! : S xR — S; xR be
F7l:SyxR —S;andF!: S, xR — R respectively.
dAs before, let{g;( )f» {hj(y2)} denote the non- Lemma.

. " gi\Y1)y, 11 \Y2 . . . Example 3.2:Let Y; be a continuous random variable

negative density functions associated with the m|xed—pe%hr

. . at is uniformly distributed in the intervé, 2]. Let X,
random variableg; andZ; respectively. Letxs;, o) = be the discrete random variable that takes valwehen

F(21i,41), 1.8 w25 = Fa(x1i, y1) andyz = Fo(w1i, ). Y; € [0,1] and1 otherwise. LetY, = Y; — X,. Clearly

Now, consider a small neighborhood,; x [y1,y1 + . . . .
dy1) of (z1:,11). From the continuity ofF, for small ? € [0, 1], is uniformly distributed and independent of
2.

enoughdys, the neighborhqodvu X [y1,51 + dyn) is Let Z; = (X1,Y1) be the natural injectiony, of Y}
mapped to some small neighborhood (ab;, 42), say (i.e. X; is just the constant random variable.). Observe

§The continuity of mapping between two copies of product spa&bat the. bl.]eCtlon b_e.tweeﬁl to the pairZ; = (X27.Y2)
S x R essentially means that the mapping is continuous with respdfiat satisfies conditions of Lemma 3.1 and implies

to right (orY") co-ordinate for fixeds; € S. Similarly, differentiability
essentially means differentiability with respecttoco-ordinate. log2 = H(Z,) = H(Z).

In this section, we present some examples to illus-
trate our definitions, setup and the entropy preservation



However, also observe that by plugging in the variouset F : S; x R — S, x R? be a continuous and
definitions of entropy in the appropriate spadé&Z,) = differentiable bijection that induces, by its application
H(X5,Y2) = H(X2) + h(Y2) = log2 + 0, where the on Z;.
first term is the discrete entropy and the second term isAs before, let the projections d&f be F; : S; x R¢ —
the continuous entropy. In general it is not difficult tS, andF, : S; x RY — R?. We consider situation where
see that the two definitions of entropy (for discrete an#, is differentiable. Letg;(y),y € R? for x; € S; and
continuous random variables) are compatible with ead¢h(y),y € R for w; € S, be density functions as
other if the random variables themselves are thought défined before. Letx;,y*) € S; x R? be mapped to

as a mixed-pair. (w;,y?) € Sy x R% Then, considetl x d Jacobian
Example 3.3:This example demonstrates that some 2

care must be taken when considering discrete and contin- J(x;, ') = [y’{} ,

uous variables as mixed-pair random variables. Consider 7 1<k,1<d

the following continuous random variablg; that is where we have used notatioft = (
uniformly distributed in the intervdD, 2]. Now, consider 2 _ (2, ..., y2). Now, similar to Lemma 3.1 we obtain
the mixed random variablg; that takes the valug with ¢ fgllowing entropy preservation for bijection between
probablllty% and takes a value uniformly distributed in,ector of mixed-pair random variables.
the interval[0, 1] with probability 1. Lemma 3.5:If for all (x;,y!) € S, x RY,

Clearly, there is a mapping that allows us to crédte
from Y; by just mappingy; € (1,2] to the valueV, = 2 |det(J(x;,y"))| =1,

and by settingl; = V> whenY; € [0,1]. However, ., H(Z') = H(Z?). Heredet(.J) denotes the deter-
given V, = 2 we are not able to reconstruki exactly. :
minant of matrix.J.

Therefore, intuitively one expects thl(Y;) > F(V3). Proof: The main ingredients for the proof of

v, Hiwczve;ng gouﬁu;e ttk(') € tr:ZSgegg\e/eo;mrﬁ sleczjr]séif:lyemma 3.1 for the scalar case were the equalities (3.1)
0]} randolm variai)les WQG; can see Ft)hat PaIS and (3.2). For a vector of mixed-pair variable we will
' obtain the following equivalent equalities: For change of
H(Y:) = H(Z,) = log2 = H(Zs). dy' at(x;,y'), letdy? be induced change &, y?). Let
vol(dy) denote the volume of dimensional rectangular

This shows that if we think ofl(Z,) as the entropy region with sides given by components @f in RY.
of the mixed random variabl®, we get an intuitively tpan

paradoxical result wherdél(Y;) = H(V2) where in

reality one would expedt(Y;) > H(V%). gi(y)vol(dy") = h;(y?*)vol(dy?). (3.4)
The careful reader will be quick to point out that the

injection from V5 to Z, introduces a new continuousFurther, at(x;,y*),

variable,Ys,, associated with the discrete valueXfas 2 1 1

well as a discrete valug, associated with the continuous vol(dy”) = |det(‘](xi’ y ))| vol(dy). (3.5)

part of V5. Indeed the "new” random variablé allows Using exactly the same argument that is used in (3.3)

us to precisely reconstrut} from Z; and thus complete (replacingdy; by vol(dy*), k = 1,2), we obtain the

the inverse mapping of the bijection. desired result. This completes the proof of Lemma 3.5.
Remark 3.4:The examples show that when one has ]

mappings involving various types of random variables

and one wishes to use bijections to compare their ery E\tropy RATE OF CONTINUOUS TIME MARKOV
tropies; one can perform this comparison as long as the CHAINS

random variables are thought of as mixed-pairs. ) ) o
A continuous time Markov chain is composed of the
. ) ) point process that characterizes the time of transitions of
C. Vector of Mixed-Pair Random Variables the states as well as the discrete states between which
Now, we derive sufficient conditions for entropythe transition happens. Specifically, lef € R denote
preservation under bijection between vectors of mixethe time ofi*" transition or jump withi € Z. LetV; € S
pair variables. To this end, let; = (Z},...,Z}) and denote the state of the Markov chain after the jump at
Zy=(Z%,...,Z2) be two vectors of mixed-pair randomtime z;, whereS be some countable state space. For
variables with their support 08; x R? andS, x R? simplicity, we assum& = N. Let transition probabilities
respectively. (Heré;,S, are countable subsets B.) bepyp, = P(V; = ¢|V;_1 = k), k,£ € N for all 4.

y%:ayé) and



We recall that the entropy rate of a point process Proof: For Markov Chain as described in the
P was defined in section 13.5 of [4] according to thetatement of proposition, we wish to establish that

following: “Observation of process conveys information _ Hy
of two kinds: the actual number of points observed and Tll_r)r;o ——— = Hgg,
the location of these points given their number.” This IegS defined above. Now
them to define the entropy of a realizati¢n,, ...,z }
as Ho,r) = H(X(T), N(T),V(T))
H(N) + H(z1, ..., zx|N) =H(X(T), N(T) + H(V(T)|N(T),X(T)).

Consider the term on the right hand side of the
dabove equality. This corresponds to the points of a
Poisson process of rate It is well-known (cf. equation

The entropy rate of the point proce$? is defined
as follows: let N(T') be the number of points arrive

in time interval (0,7] and the instances be(T) =

(Z1,- - TN (T))- Then, the entropy rate of the proces§13 -5.10), pg. 565 [4]) that

i 1

IS X Jim ZH(X(T), N(T)) = A(1—log)).  (4.2)
Her(P) = A T [H(N(T)) + BX(D)IN(D))] Now consider the ternHl(V (T)|x(T"), N(T)). Since

V(T) is independent ok(T"), we get from the definition

if the above limit exists. diti | h
We extend the above definition to the case of MarkoQ/f conditional entropy that

chain in a natural fashion. Observation of a continuous H(V(T)|x(T), N(T)) = H(V(T)|N(T)). (4.3)
time Markov chain over a time intervdD, T] conveys

information of three types: the number of pomts/Jumpgne can evaluatél(V(T)|N(T)) as follows,
of the chain in the interval, the location of the points H\V(T)|N(T)) = ZPkH(V07o~~,Vk)7
given the number as well as the value of the chain after

each jump. Treating each random variable as a mixegherep, is the probability thatV (T') = k. The sequence
pair allows us to consider all the random variables in g statesV;, ..., V; can be thought of as sequence of
single vector. states of a discrete time Markov chain with transition

As before, letN(T) denote the number of points inmatrix P. For a Markov chain, with stationary distribu-
an interval (0, T]. Let X(T') = (z1,....@n(7)), V(T) = tion « (i.e. Pm = ), it is well-known that
(Vo, Vi, ..., V() denote the locations of the jumps as
well as the values of the chain after the jumps. This llm H(Vo,-.-,Vk) = —ZW(Z’)Z;DM log p;;

T J

leads us to define the entropy of the process during the —oo k
interval (0, 7] as = Hwmc.
Hyo,r) = H(N(T),V(T),X(T)). (4.1) Thus, for anye > 0, there existg:(¢) large enough such
that for k > k(e)

Observe that théN (T),V(T),x(T)) is a random vector
of mixed-pair variables. “H(Vp, ..., Vi) —Huc| < e

For a single state Markov chain the above entropy k
is the same as that of the point process determine ther 7' large enough, using tail-probability estimates of
jump/transition times. Similar to the development foPoisson variable it can be shown that

‘ 1

point processes, we define the entropy rate of the Markov T
chain as P(N(T) < k(e)) <exp | —— ).
Hpp = Lim H(O»T], if it exists. Pu_tting these together, we obtain that for givethere
existsT'(¢) large enough such that far > T'(e)
Proposition 4.1: Consider a Markov chain with un-
derlying Point process being Poisson of rate its w = (Z kpr M)
stationary distribution being = (7 (¢)) with transition T
probability matrix P = [p;;]. Then, its entropy rate is 2 k>k(e) kPe(Hue £ €) + O(k(e))
well-defined and = - T
Her = A1 — log A) + AHuc, _ (HMCiE)%(k(ﬁ))
WhereHMc = _Zi 7T(Z) ijij logpij. = AHmc £ 2e.



That is head, else assign it tBy. Then, the baby-process@s

lim HV(T)IN(T)) = Muc. and P, have the same entropy rate as Poisson processes
T—o0 T of ratesAp and \(1 — p) respectively.
Combining (4.2), (4.3) and the above equation we Proof: Consider a Poisson ProcesB, of rate
complete the proof of the Proposition 4.1. B ) in the interval [0,T]. Let N(T') be the number of

Fact 4.2 (cf. Ch. 13.5 [4]):Consider the set of sta- Eoin:]s_inl this interval :;:nd :ea(T) = {a1, . anm)}
tionary ergodic point processes with mean raterhen e their locations. Further, 1&€(T)) = {C1, ..., Cnn)}

the entropy of this collection is maximized by a Poissoﬁle the outcomes of the coin-tosses am(T’) denote

Process with rata. That is, if P is a stationary ergodic 1€ number of hsads iamojgg thegL Denotd) =
point process with rate then { R, "“vRM(T)}' (T) = {B1,...., N(T)—M(T>_} as

the locations of the baby-processes, P, respectively.
Hegr(P) < A(1 —log)). It is easy to see that the following bijection holds:

Example 4.3:Consider the queue size process of an {a(T),C(T), N(T),M(T)} =
M /M /1 queue with arrival rate, and service rate; > {r(T),b(T), N(T) — M(T), M(T).}
Aa- The queue size is a continuous time Markov chain. ’ ’ T

Since the location of the jumps is a Poisson proce§dven the outcomes of the coin-tosse€(T'),
of rate A, + \,, one can see that the number of points,f (7),b(T)} is a permutation of a(T’). Hence,
NI[T] in the interval(0, T satisfies the condition that the Jacobian corresponding to any realization of

{C(T), N(T), M(T)} that mapsa(T) to {r(T),b(T)}
. NI[T] . : ; .
Aefy = lim T = Ao+ A a.s. is a permutation matrix. It is well-known that the
T=oe determinant of a permutation matrix 4sl.
The stationary distribution of the birth-death Markov Therefore, Lemma 3.5 implies that

chain of the queues is given by
N H(a(T), C(T), N(T), M(T))
P(Q:O):li)\iav :H(Y(T),b(T),N(T)7M(T),M(T)
A\ g A\ (4.4) < H(b(T), N(T) — M(T)) + H(r(T), M(T)).
P(Q=1i)= (; [1—; 0> 1. (5.2)
From here one can compute the entropy rate of the (T is completely determined b@(7T") and it is easy
discrete time Markov chain of the queue-size values tg§ deduce from the definitions that

be

(5.1)

’ M A, Ao A, H(M(T)[a(T), C(T), N(T)) = 0.
MCii)\a"'_)\s Og)\a"")\si)\a"")\s OgAa'i_As. Hence
Putting these together we obtain H(a(T),C(T), N(T), M(T))
Her = (A +A) (1= log(A +A.)) = H(a(T), C(T), N(T) 53)
a Aa +H(M(T)[a(T),C(T'), N(T)) '
+()\a+/\s) _>\ )\ IOg)\ )\
at As a Tt As (45) = H(a(T), C(T), N(T))
M 1 As Since the outcome of the coin-tosses along with their
SIS WL SWNY J

locations form a continuous time Markov chain, using

= Aa(1 —log Ag) + As(1 —log Ay). Proposition 4.1 we can see that
1
5. APPLICATION lim —H(&(T), C(T), N(T), M(T))

A. Poisson Splitting via Entropy Preservation 1
In this section, we use the sufficient conditions de- = M TH(a(T)7C(T)»N(T))

veloped in Lemma 3.5 to obtain proof of the following =A(1—logA) — A(plogp + (1 — p)log(1 — p))

property. _ _ _ _ _
Lemma 5.1:Consider a Poisson procesB, of rate = Ap(1 —logAp) + A(1 = p)(1 — log A1 pzéﬁ)

. Split the proces$ into two baby-processeB; and '

P» as follows: for each point oP, toss an independent It is well known thatP,, P, are stationary ergodic

coin of biasp. Assign the point tdP; if coin turns up processes of ratelp, A\(1 — p) respectively. Hence from



Fact 4.2 we have The next two lemmas show that equations (6.2) and
(6.3) are satisfied and hence completes the proof of
Lemma 2.3.

(5.5) Lemma 6.1:Let Y be a continuous random variable
with a density functiony(y) such that for somé > 0

<A1 =p)(1—logA(1—p)).
- -— ( p)( g ( p)) - /g(y)1+5dy < 00.
Combining equations (5.2), (5.4), (5.5) we can obtain R

i H(F(T), M(T)) < Ap(1 — log Ap),

Jim E(b(T), N(T) ~ M(T))

1 Further if g(y) can be written as sum of non-negative
Aim ZH(r(T), M(T)) = Ap(1 — log Ap), functionsg, (y), the
. 1 5.6
Jim_ ZH(B(T), N(T) ~ M(T)) (5.6) 3 [ a0z gi(w)-dy < .
e e
=A(L = p)(A ~log AL —p)). Proof: For givend, there exists finiteBs > 1 such

Thus, the entropy rates of procesg@sand P, are the that forz > Bj, logx < z°. Using this, we obtain

same as that of Poisson processes of rapeend\(1—p)
respectively. This completes the proof of Lemma 5Sal. /Rgi(y)(log 9i(y))+dy
6. CONCLUSIONS :/ 9i(y) log g;(y)dy

This paper deals with notions of entropy for random 9:(v)21
variables that are mixed-pair, i.e. pair of discrete and :/ 9i(y) log gi(y)dy
continuous random variables. Our definition of entropy is 1<9i(y)<Bs
a natural extenglon of the known dlsqrete and dlﬁerentlal 4 / 9:(y) 1og g:(y)dy (6.4)
entropy. Situations where both continuous and discrete JBs<g:(y)

variables arise are common in the analysis of random-

ized algorithms that are often employed in networks of < log B5/Rgi(y)dy

gueues, load balancing systems, etc. We hope that the s

techniques developed here will be very useful for the +/gi(y) dy

analysis of such systems and for computing entropy rates ®

for the processes encountered in these systems. = p;log Bs + / gi(y) Tody.
R

A. Proof of Lemma 2.3 Z/gi(y)(loggi(y)hdy

We wish to establish that the conditions of Lemma i R
2.3 guarantee that
g <) (pi log Bs + /]R gi(y)”‘sdy)

Z/gi(y)lloggi(y)ldy < o0. (6.1) o '
i = log Bs + / Zgi(y)1+5dy
Let (a); = max(a,0) and (a)_ = min(a,0) for a € R

R. Then, (b)
< log Bs +/g(y)1+5dy
R

< 0.

a=ay+a_, and |a]=ay—a_.
By definition g;(y) = 0. Observe that In (a) we use the fact thaf; (y) is positive to interchange
|log gi(y)| = 2(log g:(y))+ — log gi(y)- the sum and the integral. [h), we again use the fact that

146 i 1+
Therefore to guarantee (6.1) it suffices to show th&(¥) = 0 to bound}Z; gi(y) ™ with (3, gi(y)) ™.

following two conditions: u

Lemma 6.2:In addition to the hypothesis of in

Z/ gi(y)(log g;(y))+dy < 00,  (6.2) Lemma 6.1 assume thaf has a finitee moment for
7 JR somee > 0. Then the following holds:

Z ‘/Rgz-(y) loggi(y)dy‘ <oo. (6.3 3

i

o) 1oggi<y>dy| o



Proof: Let for somee > 0, we obtain from (6.7) that

M, = / lyl°g(y) dy < . > ’/gi(y) loggi(y)dy’ < 0.
R 7
Note that for anye > 0, there is a constar@. > 0, u
such thatf, Cce™1I"dy = 1. Further, observe that the
density g;(y) = ¢:(y)/p; is absolutely continuous w.r.t. REFERENCES

the densityf(y)(2 C.e~1¥°). Thus from the fact that [1] B. Prabhakar and R. Gallager, “Entropy and the timing capacity of
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= / 9i(y)log gi(y) dy — p; log p;
R

— i logCe+/R|y|€gi(y)dy.

Therefore
- / gi(y)log gi(y) dy

R (6.5)

< ~pilogp + pllog Cel + [ lyl'g:(u)dy.

R
From (6.4) we have
/R 0:(y) log gi(y) dy
< / 0:(y) (log g:(v)) + dy (6.6)
R

< pilog Bs + /Rgi(y)uédy-
Combining equations (6.5) and (6.6), we obtain
‘ /IR 9i(y) log gi(y) dy‘
< —pilogpi+pllozCl+ [ Wi'an) (67
+ pilog Bs + /Rgi(y)”‘sdy-
Now using the facts

— > pilogp; < o0,
7
Z/ \ylsgi(y)dy=/|yleg(y)dy < o0,
— Jr R
Z/gi(y)1+5dy < /g(y)l”dy < o0,
— Jr R
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