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On entropy for mixtures of discrete and
continuous variables

Chandra Nair Balaji Prabhakar Devavrat Shah

Abstract— Let X be a discrete random variable with
support S and f : S → S′ be a bijection. Then it is well-
known that the entropy of X is the same as the entropy
of f(X). This entropy preservation property has been
well-utilized to establish non-trivial properties of discrete
stochastic processes, e.g. queuing process [1]. Entropy as
well as entropy preservation is well-defined only in the
context of purely discrete or continuous random variables.
However for a mixture of discrete and continuous random
variables, which arise in many interesting situations, the
notions of entropy and entropy preservation have not been
well understood.

In this paper, we extend the notion of entropy in
a natural manner for a mixed-pair random variable, a
pair of random variables with one discrete and the other
continuous. Our extensions are consistent with the existing
definitions of entropy in the sense that there exist natural
injections from discrete or continuous random variables
into mixed-pair random variables such that their entropy
remains the same. This extension of entropy allows us
to obtain sufficient conditions for entropy preservation
in mixtures of discrete and continuous random variables
under bijections.

The extended definition of entropy leads to an entropy
rate for continuous time Markov chains. As an application,
we recover a known probabilistic result related to Poisson
process. We strongly believe that the frame-work developed
in this paper can be useful in establishing probabilistic
properties of complex processes, such as load balancing
systems, queuing network, caching algorithms.

Index Terms— entropy, bijections

1. INTRODUCTION

The notion of entropy for discrete random variables
as well as continuous random variables is well defined.
Entropy preservation of discrete random variable under
bijection map is an extremely useful property. For ex-
ample, Prabhakar and Gallager [1] used this entropy
preservation property to obtain an alternate proof of the
known result that Geometric processes are fixed points
under certain queuing disciplines.
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In many interesting situations, including Example
1.1 given below, the underlying random variables are
mixtures of discrete and continuous random variables.
Such systems exhibit natural bijective properties which
allow one to obtain non-trivial properties of the system
via ”entropy preservation” arguments. However, the main
difficulty in establishing such arguments is the lack of
notion of entropy for mixed random variables and ap-
propriate sufficient conditions for entropy preservation.

In this paper, we will extend the definition of entropy
for random variables which are mixed pair of discrete
and continuous variables as well as obtain sufficient
conditions for preservation of entropy. Subsequently, we
will provide a rigorous justification of mathematical
identities that follow in the example below.

Example 1.1 (Poisson Splitting):Consider a Poisson
Process,P, of rateλ. Split the Poisson process into two
baby-processesP1 andP2 as follows: for each point of
P, toss an independent coin of biasp; if coin turns up
heads then the point is assigned toP1, else toP2. It
is well-known thatP1 andP2 are independent Poisson
processes with ratesλp andλ(1− p) respectively.

Entropy rate of a Poisson process with rateµ is known
to be µ(1 − log µ) bits per second. That is, entropy
rates of P, P1, and P2 are given byλ(1 − log λ),
λp(1−log λp) andλ(1−p)(1−log λ(1−p)) respectively.
Further observe that the coin of biasp is tossed at
a rate λ and each coin-toss has an entropy equal to
−p log p− (1− p) log(1− p) bits.

It is clear that there is a bijection between the tuple
(P, coin-toss process) and the tuple (P1,P2). Observe
that the joint entropy rate of the two independent baby-
processes are given by their sum. This leads to the
following “obvious” set of equalities.

HER(P1,P2) = HER(P1) + HER(P2)
= λp(1− log λp) + λ(1− p)(1− log λ(1− p))
= λ(1− log λ) + λ(−p log p− (1− p) log(1− p))
= HER(P) + λ(−p log p− (1− p) log(1− p)).

(1.1)

The last sum can be identified as sum of the entropy



rate of the original Poisson process and the entropy rate
of the coin tosses. However the presence of differential
entropy as well as discrete entropy prevents this inter-
pretation from being rigorous. In this paper, we shall
provide rigorous justification to the above equalities.

A. Organization

The organization of the paper is as follows. In section
2, we introduce the mixed-pair of random variables and
extend the definition of entropy for the mixed-pair of
random variables. We will also derive some properties
for the extended definition of entropy that agree with
the properties of entropy for the discrete and continuous
random variables. In section 3, we will establish suffi-
cient conditions under which bijections preserve entropy
for mixed-pair random variables and random vectors. In
section 4, we will define the entropy rate of a continuous
time Markov chain using the definition of entropy for
mixed-pair random variables. In the subsequent section
we use these definitions to recover an old result (Poisson
splitting). We conclude in section 6.

2. DEFINITIONS AND SETUP

This section provides technical definitions and sets up
the frame-work for this paper. First, we present some
preliminaries.

A. Preliminaries

Consider a measure space(Ω,F ,P), with P being a
probability measure. Let(R, BR) denote the measurable
space onR with the Borelσ-algebra. A random variable
X is a measurable mapping fromΩ to R. Let µX denote
the induced probability measure on(R, BR) by X. We
call X asdiscrete random variableif there is a countable
subset{x1, x2, ...} of R that forms a support for the
measureµX . Let pi = P(X = xi) and note that

∑
i pi =

1.
The entropy of a discrete random variable is defined

by the sum

H(X) = −
∑

i

pi log pi.

Note that this entropy is non-negative and has several
well known properties. One natural interpretation of this
number is in terms of the maximum compressibility (in
bits per symbol) of an i.i.d. sequence of the random
variables,X (cf. Shannon’s data compression theorem
[2]).

A random variableY , defined on(Ω,F ,P), is said to
be acontinuous random variableif the probability mea-
sure,µY , induced on(R, BR) is absolutely continuous

with respect to the Lebesgue measure. These probability
measures can be characterized by a non-negative density
function f(x) that satisfies

∫
R f(x)dx = 1. The entropy

(differential entropy) of a continuous random variable is
defined by the integral

h(Y ) = −
∫

R
f(y) log f(y)dy.

The entropy of a continuous random variable is not
non-negative, though it satisfies several of the other prop-
erties of the discrete entropy function. Due to negativity,
differential entropy clearly does not have interpretation
of maximal compressibility. However, it does have the
interpretation of being the limiting difference between
the maximally compressed quantization of the random
variable and an identical quantization of an independent
U[0, 1]∗ random variable [3] as the quantization resolu-
tion goes to zero. Hence the term differential entropy
is usually preferred to entropy when describing this
number.

B. Our Setup

In this paper, we are interested in a set of random
variables that incorporate the aspects of both discrete
and continuous random variables. LetZ = (X,Y ) be
a measurable mapping from the space(Ω,F ,P) to the
space(R × R, BR × BR). Observe that this mapping
induces a probability measureµZ on the space(R ×
R, BR × BR) as well as two probability measuresµX

and µY on (R, BR) obtained via the projection of the
measureµZ .

Definition 2.1 (Mixed-Pair):Consider a random vari-
ablesZ = (X,Y ). We call Z† a mixed-pair ifX is a
discrete random variable whileY is a continuous random
variable. That is, the support ofµZ is on the product
spaceS × R, with S = {x1, x2, ...} is a countable
subset ofR. That isS forms a support forµX while µY

is absolutely continuous with respect to the Lebesgue
measure.

Observe that Z = (X,Y ) induces measures
{µ1, µ2, ....} that are absolutely continuous with respect
to the Lebesgue measure, whereµi(A) = P(X =
xi, Y ∈ A), for every A ∈ BR. Associated with these
measuresµi, there are non-negative density functions

∗U[0,1] represents a random variable that is uniformly distributed
on the interval [0,1]
†For the rest of the paper we shall adopt the notation that ran-

dom variablesXi represent discrete random variables,Yi represent
continuous random variables andZi represent mixed-pair of random
variables.
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gi(y) that satisfy
∑

i

∫

R
gi(y)dy = 1.

Let us definepi =
∫
R gi(y)dy. Observe thatpi’s

are non-negative numbers that satisfy
∑

i pi = 1 and
corresponds to the probability measureµX . Further
g(y) =

∑
i gi(y) corresponds to the probability measure

µY . Let

g̃i(y)
4
=

1
pi

gi(y)

be the probability density function ofY conditioned on
X = xi.

The following non-negative sequence is well defined
for everyy ∈ R for which g(y) > 0,

pi(y) =
gi(y)
g(y)

, i ≥ 1.

Now g(y) is finite except possibly on a set,A, of measure
zero. Fory ∈ Ac, we have that

∑
i pi(y) = 1; pi(y)

corresponds to the probability thatX = xi conditioned
on Y = y. It follows from definitions ofpi and pi(y)
that

pi =
∫

R
pi(y)g(y)dy.

Definition 2.2 (Good Mixed-Pair ):A mixed-pair
random variableZ = (X, Y ) is called good if the
following condition is satisfied:

∑

i

∫

R
|gi(y) log gi(y)|dy < ∞. (2.1)

Essentially, the good mixed-pair random variables
possess the property that when restricted to any of
the X values, the conditional differential entropy of
Y is well-defined. The following lemma provides a
simple sufficient conditions for ensuring that a mixed-
pair variable is good.

Lemma 2.3:The following conditions are sufficient
for a mixed-pair random variable to be a good pair:
(a) Random variableY possess a finiteεth moment for

someε > 0, i.e.

Mε =
∫

R
|y|εg(y)dy < ∞.

(b) There existsδ > 0 such thatg(y) satisfies
∫

R
g(y)1+δdy < ∞.

(c) The discrete random variableX has finite entropy,
i.e. −∑

i pi log pi < ∞.

Proof: The proof is presented in the appendix.

Definition 2.4 (Entropy of a mixed-pair):The
entropy of a good mixed-pair random variable is defined
by

H(Z) = −
∑

i

∫

R
gi(y) log gi(y)dy. (2.2)

Definition 2.5 (Vector of Mixed-Pairs):Consider a
random vector(Z1, ..., Zd) = {(X1, Y1), ..., (Xd, Yd)}.
We call (Z1, ..., Zd) a vector of mixed-pairs if the
support ofµ(Z1,...,Zd) is on the product spaceSd × Rd,
whereSd ⊂ Rd is a countable set. That is,Sd forms the
support for the probability measureµ(X1,..,Xd) while
the measureµ(Y1,..,Yd) is absolutely continuous with
respect to the Lebesgue measure onRd.

Definition 2.6 (Good Mixed-Pair Vector ):A vector
of mixed-pair random variables(Z1, ..., Zd) is called
good if the following condition is satisfied:

∑

x∈Sd

∫

y∈Rd

|gx(y) log gx(y)|dy < ∞, (2.3)

where gx(y) is the density of the continuous random
vectorY d conditioned on the event thatXd = x.

Analogous to Lemma 2.3, the following conditions
guarantee that a vector of mixed-pair random variables
is good.

Lemma 2.7:The following conditions are sufficient
for a mixed-pair random variable to be a good pair:

(a) Random variableY d possess a finiteεth moment
for someε > 0, i.e.

Mε =
∫

Rd

‖y‖εg(y)dy < ∞.

(b) There existsδ > 0 such thatg(y) satisfies
∫

Rd

g(y)1+δdy < ∞.

(c) The discrete random variableXd has finite entropy,
i.e. −∑

x∈Sd px log px < ∞.
Proof: The proof is similar to that of Lemma 2.3

and is omitted.
In rest of the paper, all mixed-pair variables and

vectors are assumed to begood, i.e. assumed to satisfy
the condition (2.1).

Definition 2.8 (Entropy of a mixed-pair vector):
The entropy of a good mixed-pair vector of random
variables is defined by

H(Z) = −
∑

x∈Sd

∫

Rd

gx(y) log gx(y)dy. (2.4)
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Definition 2.9 (Conditional entropy):Given a pair of
random variables(Z1, Z2), the conditional entropy is
defined as follows

H(Z1|Z2) = H(Z1, Z2)−H(Z2).

It is not hard to see thatH(Z1|Z2) evaluates to

−
∑

x1,x2

∫

R2
gx1,x2(y1, y2) log

gx1,x2(y1, y2)
gx2(y2)

dy1dy2.

Definition 2.10 (Mutual Information):Given a pair
of random variables(Z1, Z2), the mutual information
is defined as follows

I(Z1; Z2) = H(Z1) +H(Z2)−H(Z1, Z2).

The mutual information evaluates to
∑

x1,x2

∫

R2
gx1,x2(y1, y2) log

gx1,x2(y1, y2)
gx1(y1)gx2(y2)

dy1dy2.

Using the fact that1 + log x < x for x > 0 it can be
shown thatI(Z1; Z2) is non-negative.

C. Old Definitions Still Work

We will now present injections from the space of
discrete (or continuous) random variables into the space
of mixed-pair random variable so that the entropy of the
mixed-pair random variable is the same as the discrete
(or continuous) entropy.

Injection: Discrete into Mixed-Pair: Let X be a discrete
random variable with finite entropy. Let{p1, p2, . . .}
denote the probability measure associated withX. Con-
sider the mappingσd : X → Z ≡ (X,U) whereU is
an independent continuous random variable distributed
uniformly on the interval [0,1]. ForZ, we havegi(y) =
pi for y ∈ [0, 1]. Therefore

H(Z) = −
∑

i

∫

R
gi(y) log gi(y) dy

=
∑

i

∫ 1

0

−pi log pidy

= −
∑

i

pi log pi

= H(X) < ∞.

Therefore we see thatH(Z) = H(X).

Injection: Continuous into Mixed-Pair: Let Y be a con-
tinuous random variable with a density functiong(y) that
satisfies ∫

R
g(y)| log g(y)| dy < ∞.

Consider the mappingσc : Y → Z ≡ (X0, Y ) whereX0

is the constant random variable, sayP(X0 = 1) = 1. Ob-
serve thatg(y) = g1(y) and that the pairZ ≡ (X0, Y )
is a good mixed-pair that satisfiesH(Z) = h(Y ).

Thus σd and σc are injections from the space of
continuous and discrete random variables into the space
of good mixed-pairs that preserve the entropy function.

D. Discrete-Continuous Variable as Mixed-Pair

Consider a random variable‡ V whose support is
combination of both discrete and continuous. That is, it
satisfies the following properties: (i) There is a countable
set (possibly finite)S = {x1, x2, ...} such thatµV (xi) =
pi > 0; (ii) measureµ̃V with an associated non-negative
function g̃(y) (absolutely continuous w.r.t. the Lebesgue
measure), and (iii) the following holds:

∫

R
g̃(y) dy +

∑

i

pi = 1.

Thus, the random variableV either takes discrete values
x1, x2, . . . with probabilities p1, p2, . . . or else it is
distributed according to the density function11−p g̃(y);
wherep =

∑
i pi. Observe thatV has neither a countable

support nor is its measure absolutely continuous with
respect to Lebesgue measure. Therefore, though such
random variables are encountered neither the discrete
entropy nor the continuous entropy is appropriate.

To overcome this difficulty, we will treat such vari-
ables as mixed-pair variables by appropriate injection of
such variables into mixed-pair variables. Subsequently,
we will be able to use the definition of entropy for
mixed-pair variables.

Injection: Discrete-Continuous into Mixed-Pair: Let V
be a discrete-continuous variable as considered above.
Let the following two conditions be satisfied:

−
∑

i

pi log pi < ∞ and
∫

R
g̃(y)| log g̃(y)| dy < ∞.

Consider the mappingσm : V → Z ≡ (X, Y ) described
as follows: WhenV takes a discrete valuexi, it is
mapped on to the pair(xi, ui) where ui is chosen
independently and uniformly at random in[0, 1]. When
V does not take a discrete value and say takes valuey,
it gets mapped to the pair(x0, y) where x0 6= xi, ∀i.
One can think ofx0 as an indicator value thatV takes
when it is not discrete. The mixed-pair variableZ has
its associated functions{g0(y), g1(y), ...} wheregi(y) =

‡Normally such random variables are referred to as mixed random
variables.
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pi, y ∈ [0, 1], i ≥ 1 and g0(y) = g̃(y). The entropy of
Z as defined earlier is

H(Z) = −
∑

i

∫

R
gi(y) log gi(y) dy

= −
∑

i

pi log pi −
∫

R
g̃(y) log g̃(y) dy.

Remark 2.11:In the rest of the paper we will treat
every random variable that is encountered as a mixed-
pair random variable. That is, a discrete variable or a
continuous variable would be assumed to be injected
into the space of mixed-pairs using the mapσd or σc,
respectively.

3. BIJECTIONS ANDENTROPY PRESERVATION

In this section we will consider bijections between
mixed-pair random variables and establish sufficient
conditions under which the entropy is preserved. We
first consider the case of mixed-pair random variables
and then extend this to vectors of mixed-pair random
variables.

A. Bijections between Mixed-Pairs

Consider mixed-pair random variablesZ1 ≡ (X1, Y1)
and Z2 ≡ (X2, Y2). Specifically, let S1 = {x1i}
and S2 = {x2j} be the countable (possibly finite)
supports of the discrete measuresµX1 and µX2 such
that µX1(x1i) > 0 and µX2(x2j) > 0 for all i ∈ S1

and j ∈ S2. Therefore a bijection between mixed-pair
variablesZ1 andZ2 can be viewed as bijections between
S1 × R andS2 × R.

Let F : S1×R→ S2×R be a bijection. GivenZ1, this
bijection induces a mixed-pair random variableZ2. We
restrict our attention to the case whenF is continuous
and differentiable§. Let the induced projections beFd :
S1 × R→ S2 andFc : S1 × R→ R. Let the associated
projections of the inverse mapF−1 : S2×R→ S1×R be
F−1

d : S2×R→ S1 andF−1
c : S2×R→ R respectively.

As before, let{gi(y1)}, {hj(y2)} denote the non-
negative density functions associated with the mixed-pair
random variablesZ1 andZ2 respectively. Let(x2j , y2) =
F (x1i, y1), i.e. x2j = Fd(x1i, y1) andy2 = Fc(x1i, y1).
Now, consider a small neighborhoodx1i × [y1, y1 +
dy1) of (x1i, y1). From the continuity ofF , for small
enoughdy1, the neighborhoodx1i × [y1, y1 + dy1) is
mapped to some small neighborhood of(x2j , y2), say

§The continuity of mapping between two copies of product space
S × R essentially means that the mapping is continuous with respect
to right (orY ) co-ordinate for fixedxi ∈ S. Similarly, differentiability
essentially means differentiability with respect toY co-ordinate.

x2j× [y2, y2 +dy2). The measure ofx1i× [y1, y1 +dy1)
is ≈ gi(y1)|dy1|, while measure ofx2j × [y2, y2 + dy2)
is ≈ hj(y2)|dy2|. Since distribution ofZ2 is induced by
the bijection fromZ1, we obtain

gi(y1)
∣∣∣∣
dy1

dy2

∣∣∣∣ = hj(y2). (3.1)

Further fromy2 = Fc(x1i, y1) we also have,

dy2

dy1
=

dFc(x1i, y1)
dy1

. (3.2)

These immediately imply a sufficient condition under
which bijections between mixed-pair random variables
imply that their entropies are preserved.

Lemma 3.1:If
∣∣∣dFc(x1i,y1)

dy1

∣∣∣ = 1 for all points

(x1i, y1) ∈ S1 × R, thenH(Z1) = H(Z2).
Proof: This essentially follows from the change

of variables and repeated use of Fubini’s theorem (to
interchange the sums and the integral). To apply Fubini’s
theorem, we use the assumption that mixed-pair random
variables aregood. Observe that,

H(Z1) = −
∑

i

∫

R
gi(y1) log gi(y1)dy1

(a)
= −

∑

j

∫

R
hj(y2) log

(
hj(y2)

∣∣∣∣
dFc(x1i, y1)

dy1

∣∣∣∣
)

dy2

(b)
= −

∑

j

∫

R
hj(y2) log hj(y2)dy2

= H(Z2).
(3.3)

Here(a) is obtained by repeated use of Fubini’s theorem
along with (3.1) and(b) follows from the assumption of
the Lemma that|dFc(x1i,y1]

dy1
| = 1.

B. Some Examples

In this section, we present some examples to illus-
trate our definitions, setup and the entropy preservation
Lemma.

Example 3.2:Let Y1 be a continuous random variable
that is uniformly distributed in the interval[0, 2]. Let X2

be the discrete random variable that takes value0 when
Y1 ∈ [0, 1] and1 otherwise. LetY2 = Y1 −X2. Clearly
Y2 ∈ [0, 1], is uniformly distributed and independent of
X2.

Let Z1 ≡ (X1, Y1) be the natural injection,σc of Y1

(i.e. X1 is just the constant random variable.). Observe
that the bijection betweenZ1 to the pairZ2 ≡ (X2, Y2)
that satisfies conditions of Lemma 3.1 and implies

log 2 = H(Z1) = H(Z2).
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However, also observe that by plugging in the various
definitions of entropy in the appropriate spaces,H(Z2) =
H(X2, Y2) = H(X2) + h(Y2) = log 2 + 0, where the
first term is the discrete entropy and the second term is
the continuous entropy. In general it is not difficult to
see that the two definitions of entropy (for discrete and
continuous random variables) are compatible with each
other if the random variables themselves are thought of
as a mixed-pair.

Example 3.3:This example demonstrates that some
care must be taken when considering discrete and contin-
uous variables as mixed-pair random variables. Consider
the following continuous random variableY1 that is
uniformly distributed in the interval[0, 2]. Now, consider
the mixed random variableV2 that takes the value2 with
probability 1

2 and takes a value uniformly distributed in
the interval[0, 1] with probability 1

2 .
Clearly, there is a mapping that allows us to createV2

from Y1 by just mappingY1 ∈ (1, 2] to the valueV2 = 2
and by settingY1 = V2 when Y1 ∈ [0, 1]. However,
given V2 = 2 we are not able to reconstructY1 exactly.
Therefore, intuitively one expects thatH(Y1) > H(V2).

However, if you use the respective injections, say
Y1 → Z1 and V2 → Z2, to the space of mixed-pairs
of random variables, we can see that

H(Y1) = H(Z1) = log 2 = H(Z2).

This shows that if we think ofH(Z2) as the entropy
of the mixed random variableV2 we get an intuitively
paradoxical result whereH(Y1) = H(V2) where in
reality one would expectH(Y1) > H(V2).

The careful reader will be quick to point out that the
injection from V2 to Z2 introduces a new continuous
variable,Y22, associated with the discrete value of2, as
well as a discrete valuex0 associated with the continuous
part ofV2. Indeed the ”new” random variableY22 allows
us to precisely reconstructY1 from Z2 and thus complete
the inverse mapping of the bijection.

Remark 3.4:The examples show that when one has
mappings involving various types of random variables
and one wishes to use bijections to compare their en-
tropies; one can perform this comparison as long as the
random variables are thought of as mixed-pairs.

C. Vector of Mixed-Pair Random Variables

Now, we derive sufficient conditions for entropy
preservation under bijection between vectors of mixed-
pair variables. To this end, letZ1 = (Z1

1 , . . . , Z1
d) and

Z2 = (Z2
1 , . . . , Z2

d) be two vectors of mixed-pair random
variables with their support onS1 × Rd and S2 × Rd

respectively. (HereS1, S2 are countable subsets ofRd.)

Let F : S1 × Rd → S2 × Rd be a continuous and
differentiable bijection that inducesZ2 by its application
on Z1.

As before, let the projections ofF beFd : S1×Rd →
S2 andFc : S1×Rd → Rd. We consider situation where
Fc is differentiable. Letgi(y), y ∈ Rd for xi ∈ S1 and
hj(y), y ∈ Rd for wj ∈ S2 be density functions as
defined before. Let(xi, y1) ∈ S1 × Rd be mapped to
(wj , y2) ∈ S2 × Rd. Then, considerd× d Jacobian

J(xi, y1) ≡
[
∂y2

k

∂y1
l

]

1≤k,l≤d

,

where we have used notationy1 = (y1
1 , . . . , y1

d) and
y2 = (y2

1 , . . . , y2
d). Now, similar to Lemma 3.1 we obtain

the following entropy preservation for bijection between
vector of mixed-pair random variables.

Lemma 3.5:If for all (xi, y1) ∈ S1 × Rd,
∣∣det(J(xi, y1))

∣∣ = 1,

thenH(Z1) = H(Z2). Here det(J) denotes the deter-
minant of matrixJ .

Proof: The main ingredients for the proof of
Lemma 3.1 for the scalar case were the equalities (3.1)
and (3.2). For a vector of mixed-pair variable we will
obtain the following equivalent equalities: For change of
dy1 at (xi, y1), let dy2 be induced change at(xj , y2). Let
vol(dy) denote the volume ofd dimensional rectangular
region with sides given by components ofdy in Rd.
Then,

gi(y1)vol(dy1) = hj(y2)vol(dy2). (3.4)

Further, at(xi, y1),

vol(dy2) =
∣∣det(J(xi, y

1))
∣∣ vol(dy1). (3.5)

Using exactly the same argument that is used in (3.3)
(replacingdyk by vol(dyk), k = 1, 2), we obtain the
desired result. This completes the proof of Lemma 3.5.

4. ENTROPY RATE OF CONTINUOUS TIME MARKOV

CHAINS

A continuous time Markov chain is composed of the
point process that characterizes the time of transitions of
the states as well as the discrete states between which
the transition happens. Specifically, letxi ∈ R denote
the time ofith transition or jump withi ∈ Z. Let Vi ∈ S
denote the state of the Markov chain after the jump at
time xi, where S be some countable state space. For
simplicity, we assumeS = N. Let transition probabilities
be pk` = P(Vi = `|Vi−1 = k), k, ` ∈ N for all i.
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We recall that the entropy rate of a point process
P was defined in section 13.5 of [4] according to the
following: “Observation of process conveys information
of two kinds: the actual number of points observed and
the location of these points given their number.” This led
them to define the entropy of a realization{x1, ..., xN}
as

H(N) +H(x1, ..., xN |N)

The entropy rate of the point processP is defined
as follows: letN(T ) be the number of points arrived
in time interval (0, T ] and the instances bex(T ) =
(x1, . . . , xN(T )). Then, the entropy rate of the process
is

HER(P) = lim
T→∞

1
T

[H(N(T )) +H(x(T )|N(T ))] ,

if the above limit exists.
We extend the above definition to the case of Markov

chain in a natural fashion. Observation of a continuous
time Markov chain over a time interval(0, T ] conveys
information of three types: the number of points/jumps
of the chain in the interval, the location of the points
given the number as well as the value of the chain after
each jump. Treating each random variable as a mixed-
pair allows us to consider all the random variables in a
single vector.

As before, letN(T ) denote the number of points in
an interval(0, T ]. Let x(T ) = (x1, ..., xN(T )), V(T ) =
(V0, V1, ..., VN(T )) denote the locations of the jumps as
well as the values of the chain after the jumps. This
leads us to define the entropy of the process during the
interval (0, T ] as

H(0,T ] = H(N(T ), V(T ), x(T )). (4.1)

Observe that the(N(T ), V(T ), x(T )) is a random vector
of mixed-pair variables.

For a single state Markov chain the above entropy
is the same as that of the point process determine the
jump/transition times. Similar to the development for
point processes, we define the entropy rate of the Markov
chain as

HER = lim
T→∞

H(0,T ]

T
, if it exists.

Proposition 4.1:Consider a Markov chain with un-
derlying Point process being Poisson of rateλ, its
stationary distribution beingπ = (π(i)) with transition
probability matrixP = [pij ]. Then, its entropy rate is
well-defined and

HER = λ(1− log λ) + λHMC,

whereHMC = −∑
i π(i)

∑
j pij log pij .

Proof: For Markov Chain as described in the
statement of proposition, we wish to establish that

lim
T→∞

H(0,T ]

T
= HER,

as defined above. Now

H(0,T ] = H(x(T ), N(T ), V(T ))
= H(x(T ), N(T )) +H(V(T )|N(T ), x(T )).

Consider the term on the right hand side of the
above equality. This corresponds to the points of a
Poisson process of rateλ. It is well-known (cf. equation
(13.5.10), pg. 565 [4]) that

lim
T→∞

1
T
H(x(T ), N(T )) = λ(1− log λ). (4.2)

Now consider the termH(V(T )|x(T ), N(T )). Since
V(T ) is independent ofx(T ), we get from the definition
of conditional entropy that

H(V(T )|x(T ), N(T )) = H(V(T )|N(T )). (4.3)

One can evaluateH(V(T )|N(T )) as follows,

H(V(T )|N(T )) =
∑

k

pkH(V0, . . . , Vk),

wherepk is the probability thatN(T ) = k. The sequence
of statesV0, . . . , Vk can be thought of as sequence of
states of a discrete time Markov chain with transition
matrix P . For a Markov chain, with stationary distribu-
tion π (i.e. Pπ = π), it is well-known that

lim
k→∞

1
k
H(V0, . . . , Vk) = −

∑

i

π(i)
∑

j

pij log pij

= HMC.

Thus, for anyε > 0, there existsk(ε) large enough such
that for k > k(ε)∣∣∣∣

1
k
H(V0, . . . , Vk)− HMC

∣∣∣∣ < ε.

For T large enough, using tail-probability estimates of
Poisson variable it can be shown that

P (N(T ) ≤ k(ε)) ≤ exp
(
−λT

8

)
.

Putting these together, we obtain that for givenε there
existsT (ε) large enough such that forT ≥ T (ε)

H(V(T )|N(T ))
T

=
1
T

(∑

k

kpk
H(V0, . . . , Vk)

k

)

=

∑
k≥k(ε) kpk(HMC ± ε) + O(k(ε))

T

= (HMC ± ε)
λT + O(k(ε))

T
= λHMC ± 2ε.
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That is

lim
T→∞

H(V(T )|N(T ))
T

= λHMC.

Combining (4.2), (4.3) and the above equation we
complete the proof of the Proposition 4.1.

Fact 4.2 (cf. Ch. 13.5 [4]):Consider the set of sta-
tionary ergodic point processes with mean rateλ. Then
the entropy of this collection is maximized by a Poisson
Process with rateλ. That is, ifP is a stationary ergodic
point process with rateλ then

HER(P) ≤ λ(1− log λ).

Example 4.3:Consider the queue size process of an
M/M/1 queue with arrival rateλa and service rateλs >
λa. The queue size is a continuous time Markov chain.

Since the location of the jumps is a Poisson process
of rateλa + λs, one can see that the number of points,
N [T ] in the interval(0, T ] satisfies the condition that

λeff = lim
T→∞

N [T ]
T

= λa + λs a.s.

The stationary distribution of the birth-death Markov
chain of the queues is given by

P(Q = 0) = 1− λa

λs
,

P(Q = i) =
(

λa

λs

)i [
1− λa

λs

]
, i ≥ 1.

(4.4)

From here one can compute the entropy rate of the
discrete time Markov chain of the queue-size values to
be

HMC = − λa

λa + λs
log

λa

λa + λs
− λs

λa + λs
log

λs

λa + λs
.

Putting these together we obtain

HER = (λa + λs) (1− log(λa + λs))

+ (λa + λs)
[
− λa

λa + λs
log

λa

λa + λs

− λs

λa + λs
log

λs

λa + λs

]

= λa(1− log λa) + λs(1− log λs).

(4.5)

5. APPLICATION

A. Poisson Splitting via Entropy Preservation

In this section, we use the sufficient conditions de-
veloped in Lemma 3.5 to obtain proof of the following
property.

Lemma 5.1:Consider a Poisson process,P, of rate
λ. Split the processP into two baby-processesP1 and
P2 as follows: for each point ofP, toss an independent
coin of biasp. Assign the point toP1 if coin turns up

head, else assign it toP2. Then, the baby-processesP1

andP2 have the same entropy rate as Poisson processes
of ratesλp andλ(1− p) respectively.

Proof: Consider a Poisson Process,P, of rate
λ in the interval [0, T ]. Let N(T ) be the number of
points in this interval and leta(T ) = {a1, ..., aN(T )}
be their locations. Further, letC(T ) = {C1, ..., CN(T )}
be the outcomes of the coin-tosses andM(T ) denote
the number of heads among them. Denoter(T ) =
{R1, ...., RM(T )}, b(T ) = {B1, ...., BN(T )−M(T )} as
the locations of the baby-processesP1,P2 respectively.

It is easy to see that the following bijection holds:

{a(T ), C(T ), N(T ), M(T )} 
{r(T ), b(T ), N(T )−M(T ),M(T ).} (5.1)

Given the outcomes of the coin-tossesC(T ),
{r(T ), b(T )} is a permutation of a(T ). Hence,
the Jacobian corresponding to any realization of
{C(T ), N(T ),M(T )} that mapsa(T ) to {r(T ), b(T )}
is a permutation matrix. It is well-known that the
determinant of a permutation matrix is±1.

Therefore, Lemma 3.5 implies that

H(a(T ), C(T ), N(T ),M(T ))
= H(r(T ), b(T ), N(T )−M(T ),M(T ))
≤ H(b(T ), N(T )−M(T )) +H(r(T ),M(T )).

(5.2)

M(T ) is completely determined byC(T ) and it is easy
to deduce from the definitions that

H(M(T )|a(T ), C(T ), N(T )) = 0.

Hence

H(a(T ), C(T ), N(T ),M(T ))
= H(a(T ), C(T ), N(T ))

+H(M(T )|a(T ), C(T ), N(T ))
= H(a(T ), C(T ), N(T )).

(5.3)

Since the outcome of the coin-tosses along with their
locations form a continuous time Markov chain, using
Proposition 4.1 we can see that

lim
T→∞

1
T
H(a(T ), C(T ), N(T ),M(T ))

= lim
T→∞

1
T
H(a(T ), C(T ), N(T ))

= λ(1− log λ)− λ(p log p + (1− p) log(1− p))
= λp(1− log λp) + λ(1− p)(1− log λ(1− p)).

(5.4)

It is well known thatP1,P2 are stationary ergodic
processes of ratesλp, λ(1− p) respectively. Hence from
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Fact 4.2 we have

lim
T→∞

1
T
H(r(T ), M(T )) ≤ λp(1− log λp),

lim
T→∞

1
T
H(b(T ), N(T )−M(T ))

≤ λ(1− p)(1− log λ(1− p)).

(5.5)

Combining equations (5.2), (5.4), (5.5) we can obtain

lim
T→∞

1
T
H(r(T ), M(T )) = λp(1− log λp),

lim
T→∞

1
T
H(b(T ), N(T )−M(T ))

= λ(1− p)(1− log λ(1− p)).

(5.6)

Thus, the entropy rates of processesP1 andP2 are the
same as that of Poisson processes of ratesλp andλ(1−p)
respectively. This completes the proof of Lemma 5.1.

6. CONCLUSIONS

This paper deals with notions of entropy for random
variables that are mixed-pair, i.e. pair of discrete and
continuous random variables. Our definition of entropy is
a natural extension of the known discrete and differential
entropy. Situations where both continuous and discrete
variables arise are common in the analysis of random-
ized algorithms that are often employed in networks of
queues, load balancing systems, etc. We hope that the
techniques developed here will be very useful for the
analysis of such systems and for computing entropy rates
for the processes encountered in these systems.

APPENDIX

A. Proof of Lemma 2.3

We wish to establish that the conditions of Lemma
2.3 guarantee that

∑

i

∫
gi(y)| log gi(y)|dy < ∞. (6.1)

Let (a)+ = max(a, 0) and (a)− = min(a, 0) for a ∈
R. Then,

a = a+ + a−, and |a| = a+ − a−.

By definition gi(y) ≥ 0. Observe that

| log gi(y)| = 2(log gi(y))+ − log gi(y).

Therefore to guarantee (6.1) it suffices to show the
following two conditions:

∑

i

∫

R
gi(y)(log gi(y))+dy < ∞, (6.2)

∑

i

∣∣∣∣
∫

R
gi(y) log gi(y)dy

∣∣∣∣ < ∞. (6.3)

The next two lemmas show that equations (6.2) and
(6.3) are satisfied and hence completes the proof of
Lemma 2.3.

Lemma 6.1:Let Y be a continuous random variable
with a density functiong(y) such that for someδ > 0∫

R
g(y)1+δdy < ∞.

Further if g(y) can be written as sum of non-negative
functionsgi(y), the

∑

i

∫

R
gi(y)(log gi(y))+dy < ∞.

Proof: For givenδ, there exists finiteBδ > 1 such
that for x ≥ Bδ, log x ≤ xδ. Using this, we obtain∫

R
gi(y)(log gi(y))+dy

=
∫

gi(y)≥1

gi(y) log gi(y)dy

=
∫

1≤gi(y)<Bδ

gi(y) log gi(y)dy

+
∫

Bδ≤gi(y)

gi(y) log gi(y)dy

≤ log Bδ

∫

R
gi(y)dy

+
∫

R
gi(y)1+δdy

= pi log Bδ +
∫

R
gi(y)1+δdy.

(6.4)

Therefore,
∑

i

∫

R
gi(y)(log gi(y))+dy

≤
∑

i

(
pi log Bδ +

∫

R
gi(y)1+δdy

)

(a)
= log Bδ +

∫

R

∑

i

gi(y)1+δdy

(b)

≤ log Bδ +
∫

R
g(y)1+δdy

< ∞.

In (a) we use the fact thatgi(y) is positive to interchange
the sum and the integral. In(b), we again use the fact that
gi(y) ≥ 0 to bound

∑
i gi(y)1+δ with (

∑
i gi(y))1+δ.

Lemma 6.2:In addition to the hypothesis ofY in
Lemma 6.1 assume thatY has a finiteε moment for
someε > 0. Then the following holds:

∑

i

∣∣∣∣
∫

gi(y) log gi(y)dy

∣∣∣∣ < ∞.
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Proof: Let for someε > 0,

Mε =
∫

R
|y|εg(y) dy < ∞.

Note that for anyε > 0, there is a constantCε > 0,
such that

∫
R Cεe

−|y|εdy = 1. Further, observe that the
density g̃i(y) = gi(y)/pi is absolutely continuous w.r.t.

the densityf(y)(
4
= Cεe

−|y|ε). Thus from the fact that
the Kullback-Liebler distanceD(g̃i||f) is non-negative
we have

0 ≤
∫

R
gi(y) log

gi(y)
pif(y)

dy

=
∫

R
gi(y) log

gi(y)
piCεe−|y|

ε dy

=
∫

R
gi(y) log gi(y) dy − pi log pi

− pi log Cε +
∫

R
|y|εgi(y)dy.

Therefore

−
∫

R
gi(y) log gi(y) dy

≤ −pi log pi + pi| log Cε|+
∫

R
|y|εgi(y)dy.

(6.5)

From (6.4) we have
∫

R
gi(y) log gi(y) dy

≤
∫

R
gi(y)(log gi(y))+dy

≤ pi log Bδ +
∫

R
gi(y)1+δdy.

(6.6)

Combining equations (6.5) and (6.6), we obtain
∣∣∣∣
∫

R
gi(y) log gi(y) dy

∣∣∣∣

≤ −pi log pi + pi| log Cε|+
∫

R
|y|εgi(y)

+ pi log Bδ +
∫

R
gi(y)1+δdy.

(6.7)

Now using the facts

−
∑

i

pi log pi < ∞,

∑

i

∫

R
|y|εgi(y)dy =

∫

R
|y|εg(y)dy < ∞,

∑

i

∫

R
gi(y)1+δdy <

∫

R
g(y)1+δdy < ∞,

we obtain from (6.7) that
∑

i

∣∣∣∣
∫

gi(y) log gi(y)dy

∣∣∣∣ < ∞.
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