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Abstract

We establish that Gaussian distributions are the optimizers for a particular optimization problem related to determining the hypercontrac-
tivity parameters for a pair of jointly Gaussian random variables.

1. Introduction

Hypercontractive inequalities have played an important role in physics, mathematics, and theoretical computer
science. In this work we will use a recently established [3] formulations of hypercontractivity parameters using
information measures to prove an extremal inequality and use this to give an alternate proof of Nelson’s result
for scalar Gaussian random variables.

For a random variable Z, let ||Z]|, := E(Z|")'? for p
(p, @)-hypercontractive, for 1 < g < p, if

\%

1. A pair of random variables (X, Y) are said to be

A

IEGMIXN, < llg()lly

holds for every measurable function g(Y).
Given p > 1, define the following related quantities:

q;(X; Y) :=inf{q : (X, Y) is (p, q)-hypercontractive},

q,(X;Y)
rp(X;Y) = L—,
p
7, X;Y) -1
sp(X;Y) = — T p> 1.
p—1

For finite valued random variables (X, Y) ~ uxy the following theorem yields an alternate expression for
hypercontractive parameters in terms of information measures.

Theorem 1 (Theorem 1 in [3]). The hypercontractive ratio r,(X;Y) is also given by any of the following
expressions

(a)

sup Dir(vylluy)
vir<uxy PDxL(vxyllux,y) — (p — DDk (vx|lux)
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(b)

- 1(U;Y)
o pI(U:X.Y) - (p — DI(U: X)

(c)
inf{d: HY) — ApH(X,Y) + A(p - DH(X) = RIH(Y) — ApH(X,Y) + A(p — DHX)],},

where K[ f(-)], denotes the lower convex envelope of the function f(-) (over joint distributions) evaluated at
the joint distribution pixy.

It is clear that the first two expressions carry over to arbitrary random variables as well using standard
techniques in probability theory. Suppose uyy is absolutely continuous with respect to the Lebesgue measure
on R? and [X Y] has a well-defined covariance matrix K, then it is reasonably straightforward to deduce from
Theorem 1 that

rp(X;Y) = inf{d : h(Y) — Aph(X,Y) + A(p — Dh(X) = K[h(Y) — Aph(X, Y) + A(p — Dh(X)],}.
The main result of this paper is the following theorem.

Theorem 2. Forany p > 1, K > 0, % <A< 1, thereexistsa0 < K’ < K and (X', Y") ~ N(0,K’) such that for
any (X, Y) ~ uxy with covariance matrix Kxy < K the following inequality holds:

Rh(Y) - Aph(X,Y) + A(p — Dh(X)], = h(Y’) — Aph(X", Y’) + A(p — Dh(X").
Further if (X, Y) ~ N(0, K) then equality is achieved.

Theorem 3 (with V. Anantharam). Let (X,Y) ~ N(0,[ 1 ¢]) and A = W, then forany 0 < K’ <[ ¢] and
X', Y) ~N(@,K") we have

h(Y’) - Aph(X’, Y’) + A(p — Dh(X’) > h(Y) — Aph(X, Y) + A(p — Dh(X).

Conversely, when (X,Y) ~ N(O,[}9]) and % <A< W, then there exists K' < |
(X', Y") ~ N(O, K’) such that

h(Y’) — Aph(X’, ¥’) + A(p — Dh(X’) < h(Y) — Aph(X, ¥) + A(p — Dh(X).

Thus combining Theorems 2 and 3 immediately implies that for (X, Y) ~ N(0, [} ¢]) we jave

12
F(X; Y) = (p-Da +1

establishing the Gaussian hypercontractivity result.

2. Main

2.1. Proof of Theorem 2: The proof uses the techniques developed in [2] to establish the optimality of
Gaussian distributions in multi-terminal information theory settings. It is immediate that

Rh(Y) = Aph(X, ¥) + Ap = D), = inf h(Y|U) = Aph(X, YIU) + A(p = Dh(X]V).

Consider the following minimization problem over pairs of random variables (X, Y) satisfying a covariance
constraint K.
V(K) := « inf  R[h(Y) — Aph(X,Y) + A(p — Dh(X)],..

Y)~pxy
Kxy>=K

Using techniques similar to those in [2] one can establish that the infimum is achieved; and in particular that
there is a triple (U, X, Y) with |U| < 4 and Kxy < K such that

V(K) = h(Y|U) — Aph(X, Y|U) + A(p — Dh(X|U).
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Let (U1, X1, Y1) and (U,, X3, Y>) be two i.i.d. copies of the minimizer (U, X, Y). Hence
2V(K) = h(Yy, 5|Uy, Uy) — Aph(Xy, X5, Yy, Yo|Uy, Us) + A(p — Dh(X;, Xo|Uy, U»).
Let X, = X'+;2,X_ = X%‘” Y, = Y‘\gz, and Y_ = Y';‘/EYZ Thus we have
2V(K) = h(Y,,Y_|U, Uy) — Aph(X,, X_, Y., Y_|U1, Us) + A(p — Dh(X,, X_|Uy, Uy).

Observe the following similar sets of manipulations.
1) Note
2V(K) = h(Y+$ Y—|Ul9 UZ) - ﬂph(X+’X—s Y+$ Y—|Ul, UZ) + /l(p - l)h(X+’X—|U1’ U2)
=h(Y,|Uy, Up) — Aph(X,, Y, |Uy, Uz) + A(p — Dh(X,|Uy, Us)
+ h(Y—|X+a Y+7 Ulv U2) - /lph(X—’ Y—|X+’ Y+7 Ula U2) + A(p - l)h(X—|X+7 Y+’ Ul’ U2)
+IX Y_|Y,, Uy, Up) + A(p — DIY,; XX, Uy, Us)
> V(K) + V(K) + I(X;; Y_|Y,, Uy, Uy) + A(p — DI(Y; X_|X,, Uy, Ua).

The last inequality holds by the definition (minimality) of V(K) combined with the observation that
Kx.y, < K,Kx y_ < K. This implies

IX Y Yy, Uy, Up) = 1Y XXy, Uy, Uz) = 0. (h
Similarly interchanging the roles of (X, Y;) with (X_, Y_) we also obtain
IX Y Y-, Uy, Up) = I(Y-; X4 |X-, Uy, Un) = 0. (2)

ii) Alternately,
2V(K) = h(Y,, Y_|Uy, Up) — Aph(X,, X_, Yy, Y_[Uy, Uz) + A(p — Dh(X4, X_|Uy, U2)
= h(Y,|Uy, Uz) — Aph(X,, Y, Uy, Uz) + A(p — Dh(X,|U1, Us)
+h(Y_|Uy, Uz) — Aph(X-, Y_|Uy, Uz) + A(p — Dh(X_|U}, U>)
= I(Y; YU, Y2) + Apl(X,, Y X, Y_[Uy, Up) = A(p — DIX,; X_|Uy, Uy)
> V(K) + V(K) = I(Y; Y_|Uy, Y2) + Apl(X,, Y X, Y_|Uy, Uz) = Ap — DIX4; XUy, Uy),
where the last inequality holds for the similar reason as above. This implies
—I(Y; Y_[U1, Yo) + ApI(Xy, Yo s X, YUy, Up) — A(p — DI(X4; XUy, Uz) < 0. (3)
iii) A third way of decomposing yields
2V(K) = h(Y+9 Y—|U1$ UZ) - Aph(X+9X—, Y+, Y—lUl’ UZ) + /l(p - l)h(X+$X—|Ul’ UZ)
= h(Y+|X—7 Y—» Ul» U2) - /lph(X+3 Y+|X—7 Y—» Ulv U2) + /1(p - l)h(X+|X—9 Y—y Ul’ UZ)
+ h(Y—|X+s Y+a Ula UZ) - /lph(X—v Y—|X+? Y+’ Ula U2) + /l(p - 1)h(X—|X+9 Y+s Ul? U2)
+IX_, Y Y UL U) + IX YoYUy, Us) — Apl(X-, Y5 X Y UL Un)
+A(p - DIY; XXy, Uy, Uz) + Ap — DIKXC, Yo X4 Uy, Us)
2 V(K) + V(K) + I(X_, Yo Yo Uy, Un) + (X4 Y| Y2, Uy, Us) — ApIXS, Y3 XL YL UL Un)
+A(p — DI(Y; XX, Uy, Up) + A(p — DIKX-, Y5 X4 Uy, U).
This implies
I(X—’ Y—a Y+|U19 U2) + I(X+a Y—|Y+’ Ul’ U2) - /lpI(X—s Y—;X+v Y+|U19 U2)
+A(p - DIY; X_|X, Uy, Up) + Ap — DIKX-, Y- X4 Uy, Us) < 0.
Using equation (1) and (2) the above constraint reduces to
[ Y_|Uy, Y2) = Apl(Xs, Y X, Yo |Uy, Un) + Ap — DIX,; X-|Uy, Up) < 0. 4)
Combining (3) and (4) yields
(Y Y_|Uy, Y2) = Apl(Xy, Y X Y_|Uy, Un) + Alp — DI, X[Uy, Uz) = 0. (%)
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iv) A fourth way of manipulation yields
2V(K) = h(Y,, Y_|Uy, U) — Aph(X:, X_, Y, Y_|Uy, Uz) + A(p — Dh(X,, X_|Uy, Uz)
= h(Y4X-, Y-, Uy, Uz) — Aph(Xy, Y4 X, Y_, Uy, Uz) + A(p — Dh(X4|X_, Y-, Uy, Uz)
+h(Y_|X,, Uy, Up) — Aph(X-, Y_|X,, Uy, Uz) + A(p — Dh(X_|X,, Uy, Ua)
+IX S Y_|Uy, Un) + 1Y XY, Uy, Uz) — ApI(X_, Y- X4 Uy, Us)
+ Ap - DIKX_, Y3 X, |U,, Un)
>V(K)+ V(K) + I(X; Y_\Uy, Up) + I(Y s X_|Y_, Uy, Up) = A(X_, Y_; X |Uy, Up).
This implies
IX; Y_\Uy,Up) + I(Y s XY, Uy, Up) = AU(X_, Y_; X, |U;, Up) < 0.
Using equation (2) this reduces to
(X3 YUy, Up) = UX_; X4 UL Ur) <0. (6)
Similarly interchanging the roles of (X,, Y;) with (X_, Y_) we also obtain
I(X_; Y4 Uy, Uz) — U(X_; XUy, Up) < 0. (7N

v) Finally a fifth way of manipulation yields
2V(K) = h(Y+’ Y—|U1$ U2) - /lph(X+sX—’ Y+’ Y—IUI’ U2) + /l(p - l)h(X+’ X—lU]’ U2)
= h(Y41X-, Y-, Uy, Uz) = Aph(Xy, Y4 X, Y_, Uy, Uz) + A(p — Dh(X4|X_, Y-, Uy, Us)
+h(Y_|Y., Uy, Uz) = Aph(X_, Y_|Y,, Uy, Uz) + A(p — Dh(X_|Y,, Uy, U2)
+ 1Y X, Y Uy, Un) = ApI(X_, Y- Y4 |UyL Un)
+A(p — DIY_; X, |Uy, Uz) + A(p — DIY-; X4 X, Uy, U2)
> V(K) + V(K) = (Ap — DIX_, Y_; Yo |Uy, U) + A(p = DIXY-; X4 Uy, Ur)
+ /l(p - ])](Y—; X+|X—9 Uls U2)‘
This implies
—(Ap = DIX_, Y_; Y4 |Uy, Uz) + Ap — DIQY-_; X4 |Uy, Up) + A(p — DIXY-; XX, Uy, Us) < 0.
Using equation (2) this reduces to
—(Ap = DIY_; Y, Uy, Uz) + A(p — DIY-; XUy, Uz) < 0. (®)
Similarly interchanging the roles of (X,, Y;) with (X_, Y_) we also obtain
~(Ap = DI(Y; Y,|UL, Us) + Ap = DIY43 X-|UL, Us) < 0. ©)

We will now combine our observations to deduce that
I(Xy, Y X, Y_|Up,Up) = 0.
Towards this, observe that
0<IX:; Y_|X_,Y,, U, Uy)
= 1(X Yo, XY, Ur, Un) = IX s XYL, Uy, Un)
=I1(X:, Y Yo, XU Un) = 1Y Yo, XUy, Un) = I(X, Y XC|ULL Un) + 1Y 35 XUy, U)
=IX, Y Y X (UL U) = 1Y YUy, Up) = I(X s XUy, Un) + 1Y XU, Up) (Using (1), (2))
(-1

1 .
= [ YU, Un) + I(X4; XUy, Us) = 1Yy YUy, Us) (Using (5))
— IX; XU, Un) + 1Y X-|UL, Un)

Ap—1

1
=I(Y; X_|Uy,Up) I(Y;Y_|UL Uy — ;1(X+;X—|U1, U,).
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We thus obtain

I(Y:; X_|Uy, Up) 2

Ap —1 1
’; IS YU U + I XUy, Ua), (10)

Combining (7) with (10) we obtain

Ap—1 1
AX XU, Up) 2 P 1YY (UL U+ =X XU, Up) &= UX X |Uy,Up) 2 1Y YUy, Us).
p
(1D
In the above simplification, we used Ap > 1.
Combining (9) with (10) we obtain
Ap—1 Ap—1 1
LI VAU Up) 2 S Vs YU Un) + — 1K XU, U) =
Ap-=1) p
Ap —1
—— Y Y_|Uy, Uz) 2 I(X1; X_|Uy, Ur). (12)
Ap-1)
Multiplying (11) by (f(ﬁ :3 and using (12) we obtain
AAp - 1) Ap(A-1)

-1 IX ;X (UL Up) =2 (X X (UL Up) & Ap—1)
which is only possible when I(X,; X_|U;,U;) =0as A < 1.

Substituting I(X,; X_|Uy, Uy) = 0 into (11) we obtain that I(Y,; Y_|U;, U;) = 0. Now using (5) we obtain
that I(X,,Y; X_,Y_|Uy,U) = 0.

Let (X®, Y®) denote a random variable distributed according to the conditional law gy (X, Y|U = u). For
every uj, uy € U we know the following two conditions hold:

1(X4; X-|U1, Uz) 20,

(a) (X1,Y))and (X5, Y») are conditionally independent given U; = u;, U, = up (by construction).

(b) (x,;‘/;(z Y';\/iyz) and (X;\/;z Y';\/EYZ) are conditionally independent given U; = u;, U, = uy (This holds since

I(X+9 Y+;X—’ Y—|U19 U2) = 0)'

From the Skitovic-Darmois characterization of Gaussian distributions we obtain that (X%, Y®) ~ N(0, K").
There is no dependence of u for K’. (See [2] for a detailed reasoning.). Let (X', Y”) ~ N(0, K").
This yields the first (main) part of Theorem 2, i.e.

V(K) =h(Y’) = Aph(X",Y") + A(p — Dh(X") < K[h(Y) — Aph(X, Y) + A(p — Dh(X)],.

The second part is immediate by choosing U ~ N(0, K — K’) independent of (X', Y”) and observing that by
setting (X,Y)=U + (X', Y") ~ N(0,K)

h(Y|U) — Aph(X, Y|U) + A(p — Dh(X|U) = h(Y’) — Aph(X’, Y") + A(p — Dh(X").
This establishes Theorem 2. O

2.2. Proof of Theorem 3 Reparameterize K’ as

(+v0) _ [U-o) (1+a) (1+a)
K = 2 2 ¢ 2 2
(1+a) (1-a) = (1-a) |’
2 2 2 2
and note that ) )
(1+a) (1-) (1+@) [(1+)
1 a — 2 - 2 1 0 2 7
a 1 (1+a) (-0 {10 1f]_ [a-o (I-a) |
] 2 2 | 2 2

Thus 0 < K’ <[} ¢]is equivalent to 0 < C

IA
-
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(1+a

Let 8 € (0, —m) be defined according to cos (g) = /L2 Without loss of generality, one may express C as

D fosto-8)-sno- e [t B o (o4

for some 6 € [0,27),0 < u,y < 1.
Thus we express K’ as

C=u

, cos’(@—pB) +y sin?(6 — B) cos(6 — B) cos(6) + y sin(6 — B) sin(6)
—H cos(6 — B) cos(6) + y sin(6 — B) sin(6) cos2(6) + y sin®(6)
When (X, Y) ~ N(0,[ L ¢]) then
1 Ap 2 2 Ap-1)
h(Y) — Aph(X,Y) + A(p — DHh(X) = 3 log(2me) — > log(2re) (1 — a) + 7 log 2me
- —%p log(sin B) — ﬂ’”—;_l log(2re). (13)

When (X', Y") ~ N(0, K’) then
h(Y’) — Aph(X’, Y’) + A(p — Dh(X")
= % log (27re,u (0032(0 —B) +ysin’(6 — ,8))) - /%p log ((27re)2,uzy sin’ ﬁ)
LAp-1
2

log (27re,u (0052(9) +vy sinz(e)))
/lp .2 /1]? +A1-1 1 2 .2
== log(y sin” 8) — — log(2mew) + 3 log (cos (6@ —pB)+ysin (0 —ﬁ))

Alp 2_ D) log (0052(6) +y sin2(9)) (14)

+

Using the representations in (13) and (14) Theorem 3 can be reformulated! as the following Lemma.

Lemma 1. Let 1 = M then for any 0 € (0,27],0 <y < 1 we have

y < (0052(9 - B) + ysin*(6 - ,3)) (0052(9) +y sinz(H))ﬂ(pil)

22
Conversely, when % <A< W%”g, then there exists 0 € (0,2r],0 <y < 1 such that

Y7 > (cos(0 = B) +y5in’(0 - B) (cos’(@) + v sin’@)"" .

Note that we have set 4 = 1, which is the worst case since —(Ap + A —1)log u > 0 and any other choice u < 1
would make the inequality (comparison between (13) and (14)) weaker.
Observe that

y¥ < (C052(6 —B) + ysin®(6 — /3)) (cos2(0) +ysin?(6)

1 A(p=1)

1-1
(—) < (l cos?(6 — B) + sin*(6 — ﬁ)) (1 cos’(6) + sin2(9)) . (15)
Y 4 Y

Concavity of the logarithm function and the Jensen’s inequality implies

)/l(p—l)

>

1 cos2(8—P)
— cos?(6 — B) +sin*(0 — B) > (—)
4 Y

1 cos?(6)
— cos?() + sin*(0) > (—)
Y Y

!'The reparamterization and subsequent reforumulation is due to V. Anantharam.
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Thus (15) holds whenever
1 -2 <cos’(60—pB)+ Ap — 1)cos? 6. (16)

Substituting A = w we would like to show the validity of (16), i.e. show equivalently that

(p cos® 0 + sin” 6).

(0 — ) < (pcoszﬁ+sin2ﬂ)
B p

The above inequality can be rearranged as

2
(\/ﬁcosecosﬂ—%sinesinﬁ) >0, 17)

which holds. This proves the first part of Lemma 1.
To show the second part, take 6 to satisfy tan 6 = p cot S, and take y = 1 — €. We expand both sides of (15) in
€ for € > 0 and observe that if
(1-2) > cos’(8—B) + Ap — 1)cos> 6 (18)

then for € > 0 small enough and y = 1 — € we would have

1\ 1 1 Ap-1)
(—) > (— cos>(0 -8B+ sin?(0 —ﬂ)) (— cos>(6) + sin’(9)
Y Y Y
as desired. (In other words equality holds in (15) at y = 1 and we are comparing the derivates as y T 1).
2 )
At A = LS BSOS o know that equality holds in (18) using (16), (17), and our choice tan 6 = p cot 8. Hence

when A < peos’ frsin’ B the inequality is strict in (18) as desired. This establishes Lemma 1. O

3. Conclusion

In this manuscript we provide an alternate proof of the characterization of r,(X;Y) for Gaussian random
variables. This work uses the technique developed in [2] for showing the optimality of Gaussian distributions.
The novel element in this work is the method used to deduce the conditional independence of (X, Y,) and
X_, Y_) by combining various ways of single-letterizing a two-letter expression. This could be potentially very
useful in several multi-terminal information theory situations.
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