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Abstract

The capacity region of a broadcast channel consisting
of k-receivers that lie in a less noisy sequence is an
open problem, when k£ > 3. We prove that superposi-
tion coding is indeed optimal for a class of broadcast
channels with a sequence of less noisy receivers. This
class contains the k = 3 case of the open problem
mentioned above, thus resolving its capacity region.

1 Introduction

Consider a discrete memoryless broadcast channel
with k-receivers Y7, ..,Ys. For formal definitions and
discussion of previous results on broadcast chan-
nels please refer to [1, 2]. A receiver Y; is said
to be less noisy[4] than receiver Y; if I(U;Y;) >
I(U;Yy) for al U — X — (Y, Y:). We denote this
relationship(partial-order) by Y = Y;.

The new idea is the use of virtual receivers in the
identification of auxiliary random variables in the
converse.

A k-receiver broadcast channel is said to belong to
class C if there exists k—1 virtual receivers V1, ..., Vi _1
satisfying:

e X - Vi — ... = Vj_q forms a Markov chain and

e The following “interleaved” less noisy condition
holds:

Vi=VizYem Yo =V =Y (1)

This class contains some interesting sequences of
less noisy receivers as mentioned below. The follow-
ing broadcast channels are some examples belonging
to class C:

1. A sequence of degraded receivers, i.e. X — Y] —
.= Yk, set V; = Yi+1,

2. A sequence of "nested” less noisy receivers, i.e.
Y, = (Y9+17"'7Yk); set V; = (}/;+17"'7Yk)7

3. A 3-receiver less noisy sequence, i.e. Y] = Yy =
Y3;set VI = Vo =Ys.
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We present a couple of results before we prove the
capacity region for the independent message require-
ment for class C.

Fact 1. From the definition of less moisy receiver,
by conditioning on Us, it follows that whenever
(U1,U2) = X — (Ys,Y;) forms a Markov chain

I(U1;Y3|Uz) < I(Uy; Y|Ua). (2)

Lemma 1. If a receiver Yy =Y, then!
(Y75 Y5lU) < T2 Yo YeuU) < -
< I(Yer, Yi3H Ve, U) < I(YITY Y ,|U)

whenever (U, Y/ Y1 Yoa) = Xp — (Yip, Yop)
forms a Markov chain for 1 <p <i—1.

Proof. For all p such that 1 < p <1 — 1, observe that

I(Yt{)lv Y;’;ip YsilU)

= I(YP Vi1 YealU)
+ 1Y Yl U, VP Y1)
STV Yk YaalU)
+ I(Ya Yai UYL YL

s,p+1
= 1P YY)

sp
where the inequality follows from (2) as
(UYL YY) = Xp — (Y, Ysp) forms a
Markov chain for 1 <p <i—1. O

1.1 Main result

Theorem 1. For any broadcast channel belonging to
class C with independent message requirements, the
capacity region is the set of rate tuples Ry, ..., R such
that Ry < I(Us;Ys|Usy1) where Uy = X, Upy1 = 0
and the sequence U, — Up_1--+ — Us — X —
(Y1,....,Yy) forms a Markov chain.

Proof. Achievability: The achievability is straight-
forward using superposition coding and jointly typ-
ical decoding. We shall refer the reader to [3] for

!The notation Y denotes (Y¢,p, Ye,p+1,-- -, Ye,i)-
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details. Since Yy = Y;,s < j < k, the receiver Y
successively decodes messages M; (equivalently the
sequences U') from j = k to j = s. Each step is
correct with high probability since

Rj = I(Uj; Yj|Ujt1) — €
< I(Uj; Ys|Uj1) — €,

when s < j < k. Therefore the rate tuples given in
Theorem 1 are indeed achievable.

Converse: Let MF , = (M1, ..., My).
Fano’s inequality, observe that for 2 < s < k

Using
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where U, ; = (MF, 1/;__1171). Here the equality (a) fol-
lows from the fact that X — V3 — -+ — Vp_q is
a Markov chain. The inequality (b) follows from (1)
and Lemma 1.

For s = 1, similarly using Fano’s inequality, ob-

serve that

nRy < I(My; Y7 | ME) + ne,,
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where the final inequality again follows from (1) and
Lemma 1.

Define @ to be a uniform random variable tak-
ing values in {1,.,n} and independent of all
other random variables. As usual, we set U; =
(Usg,Q)and X = Xg. Since X - Vi — -+ —= Vi
is a Markov chain it follows that U, — Up_1 — --- —
U; — X forms a Markov chain as well. This com-
pletes the proof of the converse. O

2 Conclusion

We establish the capacity region for the 3-receiver less
noisy broadcast channel. We also compute the capac-
ity region for a class of k-receiver less noisy sequences
that contain the previously mentioned scenario. As
mentioned earlier, a new idea of virtual receivers is
used to fashion a converse for the capacity region.
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