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Abstract

In this paper we provide a new geometric characterization of the Hirschfeld-Gebelein-Rényi maximal correlation
of a pair of random (X,Y ), as well as of the chordal slope of the nontrivial boundary of the hypercontractivity
ribbon of (X,Y ) at infinity. The new characterizations lead to simple proofs for some of the known facts about
these quantities. We also provide a counterexample to a data processing inequality claimed by Erkip and Cover, and
find the correct tight constant for this kind of inequality.

I. INTRODUCTION

There are various measures available to quantify the dependence between two random variables. A well-known
such measure for real-valued random variables is the Pearson correlation coefficient ρp(X,Y ) := cov(X,Y )

σXσY
, which

quantifies the linear dependence between the two random variables. A closely related measure, called the Hirschfeld-
Gebelein-Renyi maximal correlation, or simply the maximal correlation, measures the cosine of the angle between
the linear subspaces of mean zero square integrable real-valued random variables defined by the individual random
variables, as below.

Definition 1: Given random variables X and Y , the Hirschfeld-Gebelein-Rényi maximal correlation of (X,Y )
is defined as follows:

ρm(X;Y ) := max
(f(X),g(Y ))∈S

E[f(X)g(Y )], (1)

where S is the collection of pairs of real-valued random variables f(X) and g(Y ) such that

Ef(X) = Eg(Y ) = 0, and Ef2(X) = Eg2(Y ) = 1.

If S is empty (which happens precisely when at least one of X and Y is constant almost surely) then one defines
ρm(X;Y ) to be 0. �

This measure, first introduced by Hirschfeld [9] and Gebelein [6] and then studied by Rényi [17], has found
interesting applications in information theory.

As a general remark, to stay clear of technicalities, we restrict ourselves throughout this paper to discrete random
variables (X,Y ) taking values in X × Y with |X |,Y| < ∞. Further we assume that P(X = x) > 0,∀x ∈ X and
P(Y = y) > 0 ∀y,∈ Y . We will use := and occasionally =: for equality by definition.

Definition 2: For any real-valued random variable X and real number p 6= 0, define ‖X‖p := (E|X|p)
1

p . Define
‖X‖0 := exp(E(log |X|)). For p ≤ 0, ‖X‖p = 0 if P(|X| = 0) > 0. �

Renyi [17] derived an alternate characterization to ρm(X,Y ) as follows:

ρm(X;Y ) = max
f(X):Ef(X)=0,E[f2(X)]=1

‖E[f(X)|Y ]‖2. (2)

Maximal correlation has interesting connections to the hypercontractivity of Markov operators, as demonstrated
by Ahlswede and Gács in [1].
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Fig. 1. The blue curve is an illustration of q∗X;Y (p) (this curve is not convex in general). The brown line represents the ‘chordal’ slope
q∗X;Y (p)−1

p−1
as p → ∞, which turns out to be s∗(X;Y ). The red line is the slope of q∗X;Y (p) at (1, 1) defined by limp↓1

q∗X;Y (p)−1

p−1
and

turns out to be s∗(Y ;X). The purple line passes through (1, 1) and has slope ρ2m(X;Y ).

Definition 3: For p ≥ 1 define

q∗X;Y (p) := inf{q : ||E[g(Y )|X]||p ≤ ||g(Y )||q ∀g : Y 7→ R}. �

Remark 1: Ahlswede and Gacs [1] characterize hypercontractivity in terms of sp(X,Y ) :=
q∗X;Y (p)

p , for p ≥ 1.
If r(x) and p(x) are probability distributions on the same finite set, we write D

(
r(x)‖p(x)

)
for the relative

entropy distance of r(x) from p(x), i.e.

D
(
r(x)‖p(x)

)
:=
∑
x

r(x) log
r(x)

p(x)
.

To proceed to discuss the results of this paper, we need the following definition.
Definition 4: Let X and Y be random variables with joint distribution (X,Y ) ∼ p(x, y). We define

s∗(X;Y ) := sup
r(x) 6=p(x)

D
(
r(y)‖p(y)

)
D
(
r(x)‖p(x)

) , (3)

where r(y) denotes the y-marginal distribution of r(x, y) := r(x)p(y|x) and the supremum on the right hand side
is over all probability distributions r(x) that are different from the probability distribution p(x). If either X or Y
is a constant, we define s∗(X;Y ) to be 0. �

Remark: From the data processing inequality for relative entropies it is immediate that s∗(X;Y ) ≤ 1. Further,
s∗(X;Y ) can be regarded as a function of the input distribution p(x) corresponding to a channel p(y|x).

Below, we outline some of the properties of q∗X;Y (p) combining results from [11] and from Theorems 3 and 5
in [1].

Theorem 1: The following statements hold:
(a) For any fixed p > 1, q∗X;Y (p) ≥ 1 with equality if and only if X and Y are independent.

(b) q∗X;Y (1) = 1 and q∗X;Y (p)

p is monotonically decreasing in p.

(c) q∗X;Y (p)−1
p−1 ≥ ρ2m(X;Y ).

(d) The chordal slope of q∗X;Y (p) at infinity, defined by limp→∞
q∗X;Y (p)−1

p−1 , exists and is equal to s∗(X;Y ).

(e) limp↓1
q∗X;Y (p)−1

p−1 = s∗(Y ;X).
Remark 2: Hypercontractive inequalities (and their counterpart for p < 1, called reverse hypercontactive inequal-

ities) also play an important role in analysis, probability theory, and discrete Fourier analysis. Interested readers
can refer to the introduction in [16] for a brief summary of their development and impact in these areas. For results
and applications of hypercontractivity and reverse hypercontractivity in information theory, interersted readers can
refer to [11].
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In this paper we will provide alternate characterizations of both ρ2m(X,Y ) and s∗(X;Y ). Fix a channel p(y|x),
fix λ ∈ [0, 1], and consider the function1 of the probability distribution of X denoted by tλ(X) which is defined
by

tλ(X) := H(Y )− λH(X).

We will show in Theorem 4 that ρ2m(X,Y ) is the smallest λ such that tλ(X) has a positive semidefinite Hessian
at p(x) and s∗(X;Y ) is the smallest λ such that tλ(X) matches its lower convex envelope, denoted by K[tλ](X),
at p(x).

In [4, Theorem 8] it was claimed that the following inequality holds:

I(U ;Y ) ≤ ρ2m(X;Y )I(U ;X), ∀ U −X − Y.

It turns out that this inequality is incorrect; we will provide a counter example in this paper. Further we will show
(Theorem 4) that the following inequality holds, with a tight constant:

I(U ;Y ) ≤ s∗(X;Y )I(U ;X), ∀ U −X − Y.

The error in the proof in [4, Theorem 8] seems to be a subtle, yet significant one. A similar error has also
occurred in [10], where the authors independently rediscover the erroneous result of [4, Theorem 8] using similar
techniques.

A. Alternate characterizations of the Hirschfeld-Gebelein-Rényi maximal correlation

In this section we will review some alternate characterizations of the Hirschfeld-Gebelein-Rényi maximal corre-
lation which are known in the literature.

1) Rényi’s characterization: : As mentioned earlier, Rényi derived the following “one-function” alternate char-
acterization for ρm(X;Y ) [17]:

ρ2m(X;Y ) = max
f(X):Ef(X)=0,E[f2(X)]=1

E[E[f(X)|Y ]2]. (4)

The validity of this characterization can be proved by fixing f with E[f(X)] = 0 and E[f2(X)] = 1 and showing that
setting g(Y ) = αE[f(X)|Y ] maximizes E[f(X)g(Y )] among all functions g with E[g(Y )] = 0 and E[g2(Y )] = 1
when α ≥ 1 is chosen so that α2E(E[f(X)|Y ]2) = 1. This is a simple consequence of the Cauchy-Schwartz
inequality.

2) Distribution simulation characterization: Consider a random variable X ′ such that X − Y −X ′ is Markov
and (X,Y )

d
= (X ′, Y ). Then

ρ2m(X;Y ) = max
f(X):Ef(X)=0,E[f2(X)]=1

E[f(X)f(X ′)]. (5)

This result follows from Rényi’s characterization which was given in (4) above. Since (X,Y )
d
= (X ′, Y ), we

have E[f(X)|Y ] = E[f(X ′)|Y ]. Hence E[E[f(X)|Y ]2] = E[E[f(X)|Y ]E[f(X ′)|Y ]]
(a)
= E[E[f(X)f(X ′)|Y ]] =

E[f(X)f(X ′)], where (a) holds because X − Y −X ′.
3) Singular value characterization: For finite valued random variables maximal correlation ρm(X;Y ) can also be

characterized [18] by the second largest singular value of the matrix Q with entries Qx,y =
p(x,y)√
p(x)p(y)

. This result can

be seen by writing E[f(X)g(Y )] as
∑

x,y(f(x)
√
p(x))Q(x, y)(g(y)

√
p(y)), observing that

∑
x

√
p(x)Q(x, y) =√

p(y) and
∑

y Q(x, y)
√
p(y) =

√
p(x), and that the conditions E[f(X)] = 0 and E[g(Y )] = 0 are respectively

equivalent to requiring that x 7→ f(x)
√
p(x) is orthogonal to x 7→

√
p(x) and that y 7→ g(y)

√
p(y) is orthogonal

to y 7→
√
p(y).

There is a simple formula for ρm(X;Y ) if at least one of X or Y is binary-valued, which is most easily seen
by using the singular value characterization:

ρ2m(X;Y ) =

[∑
x,y

p(x, y)2

p(x)p(y)

]
− 1. (6)

1We abuse notation when we write tλ(X). We really wish to think of tλ as a function of the probability distribution of X .
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This follows from observing that ρ2m(X;Y ) is the second largest eigenvalue of both QQT and QTQ. If one of
these is a 2 by 2 matrix, we can find the second largest eigenvalue by computing the trace and subtracting the
largest eigenvalue, i.e. 1, from it.

B. Properties of ρm(X;Y )

In this section, we will present some known properties of the maximal correlation ρm(X;Y ).
1) Tensorization of ρm(X;Y ): The following theorem shows that maximal correlation tensorizes. It was proved

by Witsenhausen in [18]. For a function of probability distributions to have the property of the first sentence of the
theorem is what it means to say that it tensorizes.

Theorem 2: (Witsenhausen [18]) If (X1, Y1), (X2, Y2) are independent, then

ρm(X1, X2;Y1, Y2) = max{ρm(X1;Y1), ρm(X2;Y2)}.

In particular if (X1, Y1), (X2, Y2) are i.i.d., then ρm(X1, X2;Y1, Y2) = ρm(X1;Y1). �
The elegant proof in [14] (for finite valued random variables) uses the singular value characterization and

is reproduced below. When (X1, Y1) is independent of (X2, Y2) it is immediate that the matrix Q defined by
Qx1,x2,y1,y2 = p1(x1,y1)p2(x2,y2)√

p1(x1)p2(x2)p1(y1)p2(y2)
is the Kronecker product of the corresponding individual matrices Q̂x1,y1 =

p1(x1,y1)√
p1(x1)p1(y1)

and Q̃x2,y2 =
p2(x2,y2)√
p2(x2)p2(y2)

, i.e. Q = Q̂⊗Q̃. It is known that the singular values of Q are given as the set

of products of one singular value of Q̂ with one singular value of Q̃. Since the largest singular values of each of the
three matrices is unity, it is immediate that the second largest singular value of Q is max{ρm(X1;Y1), ρm(X2;Y2)}.

Witsenhausen [18] showed that the maximal correlation of two random variables gives the answer to the following
problem: consider two agents, the first of whom observes Xn, while the second observes Y n, where (Xi, Yi), 1 ≤
i ≤ n, are i.i.d. copies of (X,Y ). Each agent makes a binary decision based on the sequence available to it. The
entropy of the each binary decision should be bounded away from zero by a constant. Witsenhausen showed that
the probability of agreement between these decisions can be made to converge to 1, as n converges to infinity, if
and only if ρm(X;Y ) = 1. This is a version of the main result in the path-breaking work of Gács and Körner [5],
which introduced the concept of Gács-Körner common information.

Erkip and Cover [4] studied the problem of investment in the stock market with side information of limited rate
with the aim of quantifying the value of the side information in improving the growth rate of wealth. In one part
of their much broader contribution, they present a data processing inequality which claims that

I(U ;Y ) ≤ ρ2m(X;Y )I(U ;X), ∀ U −X − Y

where ρm(X;Y ) is the Hirschfeld-Gebelein-Rényi maximal correlation between the random variables X and Y .
As we stated earlier, this inequality is incorrect.

Kang and Ulukus illustrated some applications of maximal correlation in distributed source and channel coding
problems [12]. Beigi has introduced a quantum version of the maximal correlation for bipartite quantum states, and
has shown that this measure fully characterizes bipartite states from which common randomness distillation under
local operations is possible [2].

Recently Kamath and Anantharam [11] have used maximal correlation to study the problem of non-interactive
simulation of joint distributions. They also used hypercontractivity and reverse hypercontractivity to show that under
certain conditions these can provide stronger impossibility results for the simulation problem than those obtained
by maximal correlation.

C. Alternate characterization and properties of q∗X;Y (p)

In [11], the authors defined the following region which can be used to characterize q∗X;Y (p).
Definition 5: For a pair of random variables (X,Y ) ∼ p(x, y) on X × Y, the hypercontractivity ribbon is the

subset
RX;Y ⊆ {(p, q) ∈ R2 : 1 ≤ q ≤ p or 1 ≥ q ≥ p}

defined by2

2This characterization of the hypercontractivity ribbon is given in [11]. Another characterization, which is closer to how hypercontractivity
is normally discussed in the literature, will be mentioned later.
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• (1, 1) ∈ RX;Y ;
• For 1 ≤ q ≤ p, (p, q) ∈ RX;Y iff

Ef(X)g(Y ) ≤ ||f(X)||p′ ||g(Y )||q ∀f : X 7→ R, g : Y 7→ R; (7)

• For 1 ≥ q ≥ p, (p, q) ∈ RX;Y iff

Ef(X)g(Y ) ≥ ||f(X)||p′ ||g(Y )||q ∀f : X 7→ (0,∞), g : Y 7→ (0,∞). (8)

When 1 ≤ q < p, inequalities such as (7) are referred to in the literature as hypercontractive inequalities and
when 1 ≥ q > p, inequalities such as (8) are referred to as reverse hypercontractive inequalities. �

Then one can alternatively define q∗X;Y (p) according to

q∗X;Y (p) := inf{q : (q, p) ∈ RX;Y }, p ≥ 1.

The equivalence of this characterization to that in definition 3 is proved in [11]. The proof is similar to that of
Renyi’s alternate characterization of ρm(X,Y ) and is a straightforward application of Hölder’s inequality.

Likewise, we can define RY ;X . In general, RX;Y 6= RY ;X , but the two are related by an intimate duality
relationship that is clear from (7) and (8):

(p, q) ∈ RX;Y ⇐⇒ (q′, p′) ∈ RY ;X .

Using this duality relationship [11] establishes that limp→1
q∗X;Y (p)−1

p−1 = d
dpq
∗
X;Y (p)

∣∣∣
p=1

= s∗(Y ;X).

Remark 3: In general, s∗(X;Y ) 6= s∗(Y ;X) as shown by the following example. Let (X,Y ) be 0-1 valued
with P(X = 0) = 0.85,P(Y = 0) = 0.39,P(X = Y = 0) = 0.36. Then, computation gives us s∗(X;Y ) =
0.045..., s∗(Y ;X) = 0.029....

Most of the applications of hypercontractivity traces its roots to the following tensorization property of the
hypercontractive ribbon.

Theorem 3: ([1], [16]) If (X1, Y1) and (X2, Y2) are independent, then R(X1,X2);(Y1,Y2) = RX1;Y1
∩ RX2;Y2

. In
particular, if (X1, Y1) and (X2, Y2) are i.i.d., then R(X1,X2);(Y1,Y2) = RX1;Y1

. �
Theorem 3 can be thought of as saying that the whole hypercontractivity ribbon tensorizes, since it says that for

each (p, q) we have

1((p, q) /∈ R(X1,X2);(Y1,Y2)) = max{1((p, q) /∈ RX1;Y1
),1((p, q) /∈ RX2;Y2

)} .
A consequence of this then is that s∗(X;Y ) tensorizes, i.e. for (X1, Y1) and (X2, Y2) independent,

s∗(X1, X2;Y1, Y2) = max{s∗(X1;Y1), s
∗(X2;Y2)}.

We will give a alternate proof of the tensorization of s∗(X;Y ) later using our new characterization involving the
function tλ(X) that was introduced earlier. A direct proof of this tensorization can be obtained as follows. The
direction s∗(X1, X2;Y1, Y2) ≥ max{s∗(X1;Y1), s

∗(X2;Y2)} is immediate; hence we only show the non-trivial
direction. Note that for any r(x1, x2) 6= p(x1, x2) we have

D(r(y1, y2)||p(y1, y2))
D(r(x1, x2)||p(x1, x2))

(a)
=

D(r(y1)||p(y1)) +
∑

y1
r(y1)D(r(y2|y1)||p(y2))

D(r(x1)||p(x1)) +
∑

x1
r(x1)D(r(x2|x1)||p(x2))

=
D(r(y1)||p(y1)) +

∑
y1
r(y1)D

(∑
x1
r(x1|y1)r(y2|x1)||p(y2)

)
D(r(x1)||p(x1)) +

∑
x1
r(x1)D(r(x2|x1)||p(x2))

(b)

≤
D(r(y1)||p(y1)) +

∑
y1

∑
x1
r(x1|y1)r(y1)D (r(y2|x1)||p(y2))

D(r(x1)||p(x1)) +
∑

x1
r(x1)D(r(x2|x1)||p(x2))

=
D(r(y1)||p(y1)) +

∑
x1
r(x1)D (r(y2|x1)||p(y2))

D(r(x1)||p(x1)) +
∑

x1
r(x1)D(r(x2|x1)||p(x2))

≤ max{s∗(X1;Y1), s
∗(X2;Y2)}.

In the above (a) uses the fact that p(x1y1, x2, y1) = p1(x1, y1)p2(x2, y2) and (b) uses the convexity of D(p||q) in
p. The last inequality follows from the definition of s∗(X1;Y1), s

∗(X2;Y2), and our assumption that r(x1, x2) 6=
p(x1, x2) which guarantees that at least one of the terms in the denominator is non-zero. Finally taking sup over
all such r(x1, x2) we obtain the non-trivial direction s∗(X1, X2;Y1, Y2) ≤ max{s∗(X1;Y1), s

∗(X2;Y2)}.
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Fig. 2. An asymmetric erasure channel.

II. MAIN RESULTS

One of the main contributions of this paper is a correction to the data processing inequality claimed by Erkip
and Cover in [4, Theorem 8]. We provide a counterexample to their claim and point out a location in their proof
where the argument is incomplete. We then find the correct constant to get a tight data processing inequality of the
type they considered.

A. Counterexample to the Erkip-Cover data processing inequality

In [4, Theorem 8], Erkip and Cover claimed that

I(U ;Y ) ≤ ρ2m(X;Y )I(U ;X) (9)

holds whenever U −X −Y form a Markov chain. Furthermore they claimed that, ρ2m(X;Y ) is the minimum such
constant, i.e.

sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
= ρ2m(X;Y ). (10)

We will first provide a counterexample to these claims and then point where there is a gap in their argument. In
a subsequent subsection we will identify s∗(X;Y ) as the correct constant to replace ρ2m(X;Y ) in (9) and (10).

1) Counterexample to (9) and (10): Let X be a binary random variable with p(X = 0) = 1
2 . Define p(x, y) by

passing X through the asymmetric erasure channel given in Fig. 2. Using Equation (6), one can verify for this pair
(X,Y ) that ρ2m(X;Y ) = 0.6.

Suppose we construct U satisfying U − X − Y such that U |X = 0 ∼ Ber(0.1), U |X = 1 ∼ Ber(0.4). Then
I(U ;Y ) = 0.055770... and I(U ;X) = 0.09130..., so that I(Y ;U)

I(X;U) = 0.6108... > 0.6 = ρ2m(X;Y ), and this
contradicts (10).

It can be shown in a reasonably straightforward manner, using our characterization in Theorem 4, that s∗(X;Y ) =
1
2 log2

(
12
5

)
= 0.631517... for this pair of random variables (X,Y ). Simulation shows that for a suitable sequence

of Ui with I(Ui;X) → 0, we can have I(Ui;Y )
I(Ui;X) approach s∗(X;Y ) for this example. A sequence of such Ui is

shown in the table below.

P (U = 1|X = 0) P (U = 1|X = 1) I(U ;Y ) I(U ;X) I(U ;Y )
I(U ;X)

0.1 0.4 0.055770... 0.09130... 0.6108...
0.01 0.23 0.062321... 0.099958... 0.6234...

0.001 0.102 0.031038... 0.049379... 0.6285...
0.0001 0.04 0.012507... 0.019838... 0.6304...

0.00001 0.01474 0.0046418... 0.0073545... 0.6311...
0.000001 0.005232 0.0016507... 0.0026145... 0.6313...
0.0000001 0.0018146 0.00057285... 0.00090716... 0.6314...

0.00000001 0.00061973 0.000195672... 0.000309852... 0.63150...
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The error of the Erkip-Cover proof seems to lie in their use of a Taylor’s series expansion. Consider the expansion
in the left column of page 1037 of their paper [4], where they use their equation (16) to expand around p(ṽ). It is
possible that p(ṽ) is zero for some ṽ and this causes an error as the derivative in this direction is infinity and the
Taylor’s series expansion is no longer valid. As our counterexample shows this seems to be a significant but subtle
error that cannot be worked around.

Some of the works that use this incorrect result of [4], such as [3] and [19], are affected by this error. A claim
similar to that of [4], which appears in [10], is also false.3

B. A geometric characterization of ρ2m(X;Y ) and s∗(X;Y )

Given p(x, y), we can treat p(y|x) as a channel, and then consider the function of the input distribution p(x),
defined by

tλ(X) := H(Y )− λH(X),

where λ is a constant in [0, 1]. Observe that the function is concave when λ = 0 and convex when λ = 1.4

We write K[tλ](X) for the convex hull of tλ(X). If K[tλ](X) = tλ(X) at p(x) for some λ, then note that for
any λ1 ≥ λ

K[tλ1
](X) = K[tλ − (λ1 − λ)H](X)

≥ K[tλ](X)− (λ1 − λ)H(X).

Here the inequality comes from K[f + g] ≥ K[f ] +K[g] and since −(λ1 − λ)H(X) is convex. Therefore at p(x)
we will have that

tλ1
(X) ≥ K[tλ1

](X) ≥ K[tλ](X)− (λ1 − λ)H(X) = tλ(X)− (λ1 − λ)H(X) = tλ1
(X).

Thus we see that if K[tλ](X) = tλ(X) at p(x) for some λ then K[tλ1
](X) = tλ1

(X) at p(x) for all λ1 ≥ λ.
The following theorem gives a geometric interpretation of ρ2m(X;Y ) and s∗(X;Y ) in terms of the behaviour of

the function tλ(X) and identifies s∗(X;Y ) as the correct replacement for ρ2m(X;Y ) in (9) and (10).
Theorem 4: The following statements hold:

1) ρ2m(X;Y ) is the minimum value of λ such that the function tλ(X) has a positive semidefinite Hessian at p(x).
2) s∗(X;Y ) is the minimum value of λ such that the function tλ(X) touches its lower convex envelope at p(x),

i.e. such that K[tλ](X) = tλ(X) at p(x). Furthermore,

sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
= s∗(X;Y ).

�
Proof of 1): This follows from Rényi’s characterization of the maximal correlation, given in (4) above. Take

an arbitrary multiplicative perturbation of the form pε(x) = p(x)(1 + εf(x)). For pε to stay a valid perturbation
we need E[f(X)] = 0. Furthermore we can normalize f by assuming that E[f2(X)] = 1. The second derivative in
ε of H(Y )− λH(X) is equal to [8]

−E[E[f(X)|Y ]2] + λE[f2(X)] = −E[E[f(X)|Y ]2] + λ ,

which is non-negative as long as λ ≥ E[E[f(X)|Y ]2]. Thus the minimum value λ∗ such that the second derivative
is non-negative for all local perturbations is

λ∗ = max
f(X):Ef(X)=0,E[f2(X)]=1

E[E[f(X)|Y ]2] = ρ2m(X;Y ),

where the last equality follows from Rényi’s characterization of maximal correlation.

3This paper studies the ratio I(U ;Y )
I(U ;X)

when I(U ;X) is very small. However, as pointed out in [4], the supremum of I(U ;Y )
I(U ;X)

occurs when
I(U ;X)→ 0. So the problem studied by [10] is the same as that of [4].

4This convexity at λ = 1 follows from the fact that for any U −X − Y we have I(U ;X) ≥ I(U ;Y ) or equivalently H(Y )−H(X) ≤
H(Y |U)−H(X|U).
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Proof of 2): Consider the minimum value of λ, say λ†, such that the function tλ(X) touches its lower convex
envelope at p(x). Thus, equivalently we are looking for the minimum λ such that for (X,Y ) ∼ p(x, y) we have

H(Y )− λH(X) ≤ H(Y |U)− λH(X|U), ∀ U : U −X − Y.

Note that if U is independent of X , i.e. I(U ;X) = 0 then the above inequality is always true. Equivalently we
require the minimum λ such that,

λ ≥ I(U ;Y )

I(U ;X)
, ∀ U : U −X − Y with I(U ;X) > 0.

Thus,

λ† = sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
.

Remark: Since tλ(X) = K[tλ](X) at p(x) implies that the Hessian of tλ(X) at p(x) is positive semidefinite, we
have

sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
≥ ρ2m(X;Y ). (11)

It remains to show that λ† = s∗(X;Y ) or equivalently that

sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
= s∗(X;Y ).

From standard cardinality bounding arguments, it suffices to consider |U| ≤ |X | + 1 to determine the value of
supU : U−X−Y,I(U ;Y )>0

I(U ;Y )
I(U ;X) .5

For any |U| ≤ |X | + 1 and U − X − Y a Markov chain with I(U ;X) > 0 and X ∼ p(x), denote P(U =
u) =: wu,P(X = x|U = u) =: ru(x). Clearly

∑
uwuru(x) = p(x). Let the channel-induced distributions on Y

corresponding to the ru(x) be denoted by ru(y) respectively. Then elementary manipulations yield

I(U ;Y )

I(U ;X)
=

∑
u∈U : ru(x)6=p(x)wuD(ru(y)||p(y))∑
u∈U : ru(x)6=p(x)wuD(ru(x)||p(x))

≤ sup
r(x)6=p(x)

D
(
r(y)‖p(y)

)
D
(
r(x)‖p(x)

) ,
where r(y) denotes the channel-induced probability distribution on Y corresponding to the probability distribution
r(x) on X .

Since the above holds for all U such that U −X − Y is a Markov chain and I(U ;X) > 0, we have

sup
U : U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
≤ sup

r(x)

D
(
r(y)‖p(y)

)
D
(
r(x)‖p(x)

) = s∗(X;Y ),

where the last equality is by definition, see (3) above.
To show the other direction, we assume that s∗(X;Y ) > 0, else there is nothing to prove. Let δ ∈ (0, s∗(X;Y ))

be arbitrary. We also assume without loss of generality that p(x) > 0 ∀x ∈ X and p(y) > 0 ∀y ∈ Y , since otherwise
we could have simply changed the definition of X and Y .

Let Uε := {1, 2}. Fix a sufficiently small ε > 0 and define Uε by:
• w1 = ε, r1(x) = r∗(x),
• w2 = 1− ε, r2(x) = p(x) + ε

1−ε(p(x)− r
∗(x)) = 1

1−εp(x)−
ε

1−εr
∗(x),

where r∗(x) 6= p(x) is a probability distribution satisfying
D
(
r∗(y)‖p(y)

)
D
(
r∗(x)‖p(x)

) > s∗(X;Y )−δ. For sufficiently small ε > 0,

we will have that r2(x) is a probability distribution. Note that w1+w2 = 1 and w1r1(x)+w2r2(x) = p(x) ∀x ∈ X .
Clearly I(Uε;Y ) > 0, since I(X;Y ) = 0 would have implied that s∗(X;Y ) = 0.

For any 0 < λ < s∗(X;Y )− δ define the function

g(ε) := I(Uε;Y )− λI(Uε;X).

5Indeed our proof below indicates that even a binary U suffices.
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Fig. 3. Plot of p(x) 7→ H(Y )− 0.6H(X) for the asymmetric erasure channel given in Fig. 2. The X-axis is P (X = 0). The straight line
is drawn to connect the value of the curve at P (X = 0) = 0 to that at P (X = 0) = 1

2
, to visually demonstrate that this line is not tangent

to the curve at P (X = 0) = 1
2

.

We have
dg(ε)

dε
= − d

dε

(
εH(r∗(y)) + (1− ε)H

(
1

1− ε
p(y)− ε

1− ε
r∗(y)

))
+ λ

d

dε

(
εH(r∗(x)) + (1− ε)H

(
1

1− ε
p(x)− ε

1− ε
r∗(x)

))
= −H(r∗(y)) +H

(
p(y)− εr∗(y)

1− ε

)
+ λH(r∗(x))− λH

(
p(x)− εr∗(x)

1− ε

)
−
∑
y

r∗(y)− p(y)
1− ε

log

(
p(y)− εr∗(y)

1− ε

)
+ λ

∑
x

r∗(x)− p(x)
1− ε

log

(
p(x)− εr∗(x)

1− ε

)
.

Thus
dg(ε)

dε

∣∣∣
ε=0

= D
(
r∗(y)‖p(y)

)
− λD

(
r∗(x)‖p(x)

)
> 0,

where the last inequality is because 0 < λ < s∗(X;Y )− δ and
D
(
r∗(y)‖p(y)

)
D
(
r∗(x)‖p(x)

) > s∗(X;Y )− δ. Since g(0) = 0 this

implies that for some ε′ > 0 we have I(Uε′ ;Y )− λI(Uε′ ;X) > 0 or that

sup
U : U−X−Y,I(U ;Y )>0

I(U ;Y )

I(U ;X)
≥ I(Uε′ ;Y )

I(Uε′ ;X)
> λ.

Since the above holds for all λ < s∗(X;Y )− δ we have

sup
U : U−X−Y,I(U ;Y )>0

I(U ;Y )

I(U ;X)
≥ s∗(X;Y )− δ.

Finally, since δ > 0 is arbitrary, we are done.

Remarks:
• Note that ρ2m(X;Y ) is symmetric in the pair (X,Y ) but s∗(X;Y ) is not, i.e. s∗(X;Y ) 6= s∗(Y ;X) in general.

Thus, supU : U−X−Y,I(U ;X)>0
I(U ;Y )
I(U ;X) 6= supV : X−Y−V,I(V ;Y )>0

I(V ;X)
I(V ;Y ) in general, which is a qualitatively

different phenomenon than predicted by the incorrect Erkip-Cover claim in (10) above.
• This theorem also explains the motivation for our counterexample of the previous subsection. The plot of
p(x) 7→ H(Y )−0.6H(X) for the channel p(y|x) described earlier is given in Fig. II-B. The second derivative of
the function p(x) 7→ H(Y )−0.6H(X) at P (X = 0) = 1

2 is zero. This validates the fact that ρ2m(X;Y ) = 0.6.
It is clear that the lower convex envelope of the curve does not pass through P (X = 0) = 1

2 . The straight
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line in the figure connects the values of the curve at 0 and 1
2 and clearly demonstrates that the line is not a

tangent to the curve. Thus it is clear in the figure that ρ2m(X;Y ) is the local-convexity condition and not the
condition for being on the convex envelope.

• Thm. 8 of [1] asserts that for fixed p(y|x),

max
p(x)

ρ2m(X;Y ) = max
p(x)

s∗(X;Y ).

Using the interpretation from Theorem 4 this is immediate since having a positive semidefinite Hessian at all
points in the domain implies the graph is convex. Thus, both quantities above equal the minimum value of λ
such that the function p(x) 7→ H(Y )− λH(X) is convex.

• The above characterization of s∗(X;Y ) is also partly motivated from Körner and Marton’s characterization in
[13] of less noisy broadcast channels, where they show that for a broadcast channel X → (Y,Z) the following
holds:

I(U ;Y ) ≥ I(U ;Z) ∀ U → X → (Y,Z) ⇐⇒ D(r(z)‖p(z)) ≤ D(r(y)‖p(y)) ∀r(x), p(x),

where r(y), r(z) are the corresponding channel-induced distributions at Y and Z when X ∼ r(x) and similarly
p(y), p(z) are the corresponding channel-induced distributions at Y and Z when X ∼ p(x).

C. Alternate proof for the tensorization of s∗(X;Y )

The above characterization of s∗(X;Y ) results in an alternate proof of its tensorization. This proof is di-
rectly motivated by the factorization inequalities in broadcast channels, some of which can be found in [7].
Take a distribution of the form p(x1, x2, y1, y2) = p1(x1)p1(y1|x1)p2(x2)p2(y2|x2). The easy direction is that
s∗(X1X2;Y1Y2) ≥ max(s∗(X1;Y1), s

∗(X2;Y2)). This easily follows from the definition of s∗(X;Y ). Thus the
non-trivial part is to show that s∗(X1X2;Y1Y2) ≤ max(s∗(X1;Y1), s

∗(X2;Y2)).
Let λ := max(s∗(X1;Y1), s

∗(X2;Y2)). With K denoting the lower convex envelope operator, as earlier, we have
tλ(X1) = K[tλ](X1) at p1(x1) and tλ(X2) = K[tλ](X2) at p2(x2), where tλ(X1) denotes H(Y1) − λH(X1) and
tλ(X2) denotes H(Y2)− λH(X2).

We need to show that tλ(X1, X2) = K[tλ](X1, X2) at p1(x1)p2(x2), where tλ(X1, X2) denotes H(Y1, Y2) −
λH(X1, X2), thought of as a function of p(x1, x2), with the channel given by p(y1, y2|x1, x2) = p1(y1|x1)p2(y2|x2).

Since for any W satisfying the Markov chain W −X1X2 − Y1Y2, we have

H(Y1, Y2|W )− λH(X1, X2|W ) = H(Y1|W )− λH(X1|W ) +H(Y2|W,Y1)− λH(X2|W,X1)

≥ H(Y1|W )− λH(X1|W ) +H(Y2|W,Y1, X1)− λH(X2|W,X1)

= H(Y1|W )− λH(X1|W ) +H(Y2|W,X1)− λH(X2|W,X1) ,

we conclude that
K[tλ](X1, X2) ≥ K[tλ](X1) +K[tλ](X2) .

This inequality in fact holds for all λ and for all p(x1, x2), not just for the specific λ under consideration and at
p1(x1)p2(x2), which is where we want to use it.

Now with (X1, X2) ∼ p1(x1)p2(x2), we also have

H(Y1, Y2)− λH(X1, X2) = H(Y1)− λH(X1) +H(Y2)− λH(X2) ,

i.e. we have tλ(X1, X2) = tλ(X1) + tλ(X2) at p1(x1)p2(x2). We can put together the facts so far to write

tλ(X1, X2) = tλ(X1) + tλ(X2) = K[tλ](X1) +K[tλ](X2) ≤ K[tλ](X1, X2) ,

holding for the specific λ as defined above and for (X1, X2) ∼ p1(x1)p2(x2). But by our characterization of
s∗(X1X2;Y1Y2), this implies that s∗(X1X2;Y1Y2) ≤ max{s∗(X1;Y1), s

∗(X2;Y2)}, completing the proof of the
non-trivial direction.
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III. CONCLUSION

In this paper we presented a new geometric characterization of the maximal correlation, ρm(X;Y ), of a pair of
discrete random variables (X,Y ) taking values in finite sets. We also presented a new geometric characterization
of the chordal slope of the nontrivial boundary of the hypercontractivity ribbon of (X,Y ) at infinity, s∗(X;Y ). We
showed the application of these new characterizations in recovering some of the known results about these quantities
in a simple way. We also made a correction to a data processing inequality claimed by Erkip and Cover [4], the
error in which has had some knock-on effects in the literature. It would be interesting to find other connections
between the curve tλ(X) that we have associated to the channel p(y|x) and the entire hypercontractivity ribbon of
(X,Y ), as we vary p(x).
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