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The story of superposition coding is the story of broadcast channels with
degradation (receivers or message sets)

It is also the story of auxiliary random variables
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In the beginning

I Cover (1972) proposed the superposition coding achievable region for degraded
broadcast channels

He used an auxiliary variable to represent the message for the weaker of two
receivers.

I Bergmans (1973, Gaussian) and Gallager (1974, discrete-memoryless) established
the optimality of superposition coding for the degraded broadcast channel

Gallager’s proof of optimality of superposition coding naturally extended to a
sequence of degraded receivers

The optimality of superposition coding region was then established for
I Weaker notions of weaker receiver in a two-receiver broadcast channel

Less Noisy (Korner-Marton 75), More Capable (El Gamal 79)
I Degraded message sets (Korner-Marton 77)

Comparison of the sizes of the images of a set via two channels

A (seemingly) natural "Implication": Auxiliaries (in superposition coding) captured
the coarser message.
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More recent times ..

The optimality of superposition coding was established for
I Three receiver less-noisy broadcast channel (N-Wang 2010)

However for the following three-receiver broadcast channel setting:
I Receivers Y2, Y3 wish to decode message M0

I Receiver Y1 wishes to decode messages M0,M1

superposition coding region was not optimal (El Gamal-N 2009)

Demonstrates that auxiliaries do not capture the coarser message.

I Associating an auxiliary with information decoded by groups of receivers
improved the achievable region

U123, U12, U13, and U1 = X.
The achievable region was no longer a superposition coding region, it also involved
the other (old) idea: random binning

A (seemingly) natural "Implication" (Take 2): Auxiliaries (in superposition coding)
captured the information decoded by groups of receivers.

I Binning and Superposition both present
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Consistency

The revised intuition about auxiliaries is consistent with Marton’s achievable scheme
for two-receiver broadcast channels with private messages

I The region employs three auxiliaries: U1, U2, U12

I It is known that this region is strictly better than the one with only U1, U2 (even
for private messages).

Open Question
Is Marton’s achievable scheme for two-receiver broadcast channels optimal?

Three-or-more receivers
A three-receiver broadcast channel with private messages would have seven auxiliaries

U123, U12, U13, U23, U1, U2, U3

and a natural extension of Marton’s scheme would have two layers of superposition
coding and binning between random variables in each layer.

A succinct clean representation of the rate constraints is not available

However: this region is not optimal (Padlakanda and Pradhan (2015))
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Still one fundamental setting remained

Consider the setting:
I Receivers Y3 wish to decode message M0

I Receiver Y1, Y2 wishes to decode messages M0,M1

Interpretation of auxiliaries: U123 and U12 = X, and only superposition coding
Question: Is superposition coding optimal?
(Note: The first layer superposition coding of the previous private message setting)

Csiszar’s open problem is very closely tied to finding the capacity region
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A remark

Körner had proposed a region (1984) for the image size characterization over three
channels
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Suboptimality of superposition coding

Superposition coding is sub-optimal for the setting (N-Yazdanpanah 2017)

I Constructed a channel whose 2-letter superposition-coding region was larger than
the 1-letter one

Note: The same (counter)-example showed that Korner’s region is a proper subset of
H(X;Y ;Z|S).

This talk: Focus on the (counter)-example
I Bounds on the capacity region
I Shed light to properties of good codes for this channel
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Remarks
I It took us three years to get counterexamples

The optimization problems involved are non-convex
In small dimensions counter-examples lie in a set of very small "size" (random
sampling does not work)

I Question: Why did we believe that superposition coding was sub-optimal?
I More generally, why do we believe certain regions are optimal while certain

others are not?

An unpublished conjecture: Local-tensorization implies global tensorization
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Multilevel product broadcast erasure channel (ISIT ’17)

Xa → Ya : BEC(ea), Xb → Yb : BEC(eb)

Xa → Ŷa : BEC(êa), Xb → Ŷb : BEC(êb)

Xa → Za : BEC(fa), Xb → Zb : BEC(fb)

êa ≥ fa ≥ ea & eb ≥ fb ≥ êb

CZ = (1− fa) + (1− fb)

Xa

Xb

Ya

Ŷb

Za

Zb

Ŷa

Yb

ωa1

ωb1

ωa2

ωb2

ωa3

ωb3

ωa1

ωb1

ωa2

ωb2

ωa3

ωb3

Theorem
For ea = 1/2 êa = 1 fa = 17/22

eb = 1/2 êb = 0 fb = 9/34

1-letter SC : R0 +R1 ≤ 1 and
11

10
R0 +R1 ≤

18

17
=

11

10
CZ

2-letter SC : R0 +R1 ≤ 1 and
484

435
R0 +R1 ≤

528

493
=

484

435
CZ
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eb = 1/2 êb = 0 fb = 9/34

1-letter SC : R0 +R1 ≤ 1 and
11

10
R0 +R1 ≤

18

17
=

11

10
CZ

2-letter SC : R0 +R1 ≤ 1 and
484

435
R0 +R1 ≤

528

493
=

484

435
CZ

Chandra Nair and Mehdi Yazadanpanah GIC 23 Mar, 2018 9 / 17



Plot
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1-letter SC

The distribution that achieves the corner-point.

I Let U be a ternary random variable
P (U = 0) = 13

34 (Xa, Xb)|{U = 0} = (0, 0)

P (U = 1) = 7
34 (Xa, Xb)|{U = 1} = (M, 0)

P (U = 2) = 14
34 (Xa, Xb)|{U = 2} = (M,M)

where M is an unbiased
binary random variable

I Let Q be the random variable that symmetrizes the distribution of X
I Let Ũ = (U,Q) and substitute (Ũ ,X) into SC

R0 ≤ I(Ũ ;Z) =
10

17

R0 +R1 ≤ I(Ũ ;Z) + I(X;Y |Ũ) = 1 R0 +R1 ≤ I(X;Y ) = 1

R0 +R1 ≤ I(Ũ ;Z) + I(X; Ŷ |Ũ) = 1 R0 +R1 ≤ I(X; Ŷ ) = 1

Chandra Nair and Mehdi Yazadanpanah GIC 23 Mar, 2018 11 / 17



2-letter SC

The distribution that achieves the corner-point.

M1 & M2

two independent
unbiased binary r.v.


P (U = 0) = 20

119 (Xa1, Xb1, Xa2, Xb2)|{U = 0} = (0, 0, 0, 0)

P (U = 1) = 11
119 (Xa1, Xb1, Xa2, Xb2)|{U = 1} = (M1, 0,M2, 0)

P (U = 2) = 88
119 (Xa1, Xb1, Xa2, Xb2)|{U = 2} = (M1,M1,M1, 0)

I Let Q be the random variable that symmetrizes the distribution of X
I Let Ũ = (U,Q) and substitute (Ũ ,X) into SC ⇒ (R0, R1) = ( 75

119 ,
44
119)

Observation
I A linear code achieves the 2-letter region

A natural question
Let M = (M1, ...,Mm) be mutually independent unbiased bits.
Let Xn

a = AM and Xn
b = BM, where A,B are n×m matrices.

What is the rate region achieved by such a linear coding scheme.
(variables are m,A,B).
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Outer bound

Routine Idea: Intersection of the two capacity regions (ignoring one of the users)

Theorem
For ea = 1/2 êa = 1 fa = 17/22

eb = 1/2 êb = 0 fb = 9/34

ignoring Ŷ : R0 +R1 ≤ 1 and
11

5
R0 +R1 ≤

11

5
CZ

ignoring Y : R0 +R1 ≤ 1 and
34

25
R0 +R1 ≤

34

25
CZ
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Idea for new outer-bound

From limiting n-letter inner bound that goes to capacity:

Theorem (Concentration of mutual information over memoryless product erasure
channel)

Consider a product erasure channel, Wa(ya|xa)⊗Wb(yb|xb), mapping Xa, Xb to Ya, Yb
with erasure probabilities εa, εb, respectively. Then

I(Xn
a , X

n
b ;Y

n
a , Y

n
b ) = H(bn(1− εa)c, bn(1− εb)c) +O

(√
n log n

)
,

where
Hn(k, l) =

1(
n
k

)(
n
l

) ∑
S,T⊆[n]:|S|=k,|T |=l

H(XaS , XbT ).

Using (essentially) sub-modularity of entropy, we can establish that

lim sup
n

max
p(xn

a ,x
n
b )

1

n

(
85

160
H(n

2
,
n

2
) +

75

160
H(0, n)− 187

160
H(5n

22
,
25n

34
)

)
≤ 0.

Chandra Nair and Mehdi Yazadanpanah GIC 23 Mar, 2018 15 / 17



Idea for new outer-bound

From limiting n-letter inner bound that goes to capacity:

Theorem (Concentration of mutual information over memoryless product erasure
channel)

Consider a product erasure channel, Wa(ya|xa)⊗Wb(yb|xb), mapping Xa, Xb to Ya, Yb
with erasure probabilities εa, εb, respectively. Then

I(Xn
a , X

n
b ;Y

n
a , Y

n
b ) = H(bn(1− εa)c, bn(1− εb)c) +O

(√
n log n

)
,

where
Hn(k, l) =

1(
n
k

)(
n
l

) ∑
S,T⊆[n]:|S|=k,|T |=l

H(XaS , XbT ).

Using (essentially) sub-modularity of entropy, we can establish that

lim sup
n

max
p(xn

a ,x
n
b )

1

n

(
85

160
H(n

2
,
n

2
) +

75

160
H(0, n)− 187

160
H(5n

22
,
25n

34
)

)
≤ 0.

Chandra Nair and Mehdi Yazadanpanah GIC 23 Mar, 2018 15 / 17



Idea for new outer-bound

From limiting n-letter inner bound that goes to capacity:

Theorem (Concentration of mutual information over memoryless product erasure
channel)

Consider a product erasure channel, Wa(ya|xa)⊗Wb(yb|xb), mapping Xa, Xb to Ya, Yb
with erasure probabilities εa, εb, respectively. Then

I(Xn
a , X

n
b ;Y

n
a , Y

n
b ) = H(bn(1− εa)c, bn(1− εb)c) +O

(√
n log n

)
,

where
Hn(k, l) =

1(
n
k

)(
n
l

) ∑
S,T⊆[n]:|S|=k,|T |=l

H(XaS , XbT ).

Using (essentially) sub-modularity of entropy, we can establish that

lim sup
n

max
p(xn

a ,x
n
b )

1

n

(
85

160
H(n

2
,
n

2
) +

75

160
H(0, n)− 187

160
H(5n

22
,
25n

34
)

)
≤ 0.

Chandra Nair and Mehdi Yazadanpanah GIC 23 Mar, 2018 15 / 17



Outer bound continued
Theorem (Outer bound)

Any achievable rate pair (R0, R1) must satisfy the constraints.

R0 +R1 ≤ 1 and
187

160
R0 +R1 ≤

18

16
.

Achievability
If there is a non-trivial collection (Xn

a , X
n
b ) such that

Hn(
n

2
,
n

2
) = Hn(

n

2
,
25n

34
) + o(n),

5

11
Hn(

n

2
,
25n

34
) +

6

11
Hn(0,

25n

34
) = H(5n

22
,
25n

34
) + o(n),

8

17
Hn(0, n) +

9

17
Hn(0,

n

2
) = Hn(0,

25n

34
) + o(n),

17

25
Hn(0,

25n

34
) = Hn(0,

n

2
) + o(n),

then there are non-trivial points of the outer bound that are achievable.

Suggests: "MDS-like" (linear increase followed by flat region) code-construction for
Xn

a , Xn
b
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Conclusion

Observations
I Sub-optimality of superposition coding region
I Sub-optimality of Korner’s image-size characterization
I Linear code achieves 2-letter inner bound
I A new (explicit) outer bound from limiting n-letter inner bound
I Outer bound yields insights into structure of good codes
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