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Broadcast Channel

Downlink Communication: From antenna to users in a cell
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Broadcast Channel

: From antenna to users in a cell

§ 3 p

[Cover 1972]

> Decoder 1

—> Mo, M,

(My, My, Msy) —  Encoder

> Decoder 2

—> My, Mo

Two-receiver broadcast channel
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Memoryless Broadcast Channel

Decoder 1

> ﬂA[O y ﬂi’]

xXn
(i\[(;. My, E\[Q) —> Encoder

Decoder 2

——> M, M,

(Ro, R1, R2) is achievable: 3 a sequence of encoding maps and decoding maps

such that, as n — oo,

P(‘{(MOJ\TE) # (Mo, My)} U { (Mo, My) # (Mo,]\fl)}> — 0,

when

(Mo, My, M) ~ Uni([L: |27 |] x [1: [277]] x [1: [27F2]]).
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Memoryless Broadcast Channel

Decoder 1 +—> 1/, ]

xXn
(i\[(;. My, E\[Q) —> Encoder

Decoder 2 —> M. M,

(Ro, R1, R2) is achievable: 3 a sequence of encoding maps and decoding maps
such that, as n — oo,

P(‘{(MOJ\TE) # (Mo, My)} U { (Mo, My) # (Mo,]\fl)}> — 0,

when
(Mo, My, Ma) ~ Uni([1: |20 ]] x [L: |27 ]] x [1: |27F2]]).

Capacity Region, C(77,7T5): the closure of the set of all achievable (R, 171, [25).

L
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Memoryless Broadcast Channel

Decoder 1 ——> AA[(..AL

Xll
(Mo, My, j\[g) —>  Encoder

Decoder 2 —> M. M,

(Ro, R1, R2) is achievable: 3 a sequence of encoding maps and decoding maps
such that, as n — oo,

P(‘{(MOJ\TE) # (Mo, My)} U {(Mo, M) # (]\'fo,]\'fl)m — 0,
when

(Mo, My, M) ~ Uni([L: |27 |] x [1: [277]] x [1: [27F2]]).

Capacity Region, C(77,7T5): the closure of the set of all achievable (R, 171, [25).

Goal: A computable characterization of the capacity region. (open) g%g
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Memoryless Broadcast Channel

|
D) l Decoder 1 +—> N, M,
|

X”
(Mo, My, M;) —>  Encoder

Decoder 2 —> M. M,

Computable characterization

MAaX (R, Ry,Rs)eC(Ty,T») N0l + A1 R1 + A2 Ra: expressed as a maximum of a continuous
function over a compact set

Capacity Region, C(77,75): the closure of the set of all achievable (R, 171, 175).

Coal: A computable characterization of the capacity region. (open) Q&
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Memoryless Broadcast Channel

> Decoder 1

—> Mo, M

(Mg, My, My) —>  Encoder

> Decoder 2

—> My, M

Computable characterization

MAaX (R, Ry,Rs)eC(Ty,T») N0l + A1 R1 + A2 Ra: expressed as a maximum of a continuous

function over a compact set

This implies that 4 Turing machine that can solve the weak membership problem
[Corollary 6.2.5 in K. Weihrauch. Computable Analysis: An Introduction. Berlin, Heidelberg:

Springer-Verlag, 2000. 1SBN: 3540668179]

, C(T7.T5): the closure of the set of all achievable (R, 11, [5).

A characterization of the capacity region.

Chandra Nair Introduction
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This talk

. : Results from the classical period (1972-1982)
o : Results from the recent era (2004 - )

o Capacity regions for new classes of channels

o Optimality /Sub-optimality of certain coding strategies

Brees
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This talk

. : Results from the classical period (1972-1982)
o : Results from the recent era (2004 - )

o Capacity regions for new classes of channels

o Optimality /Sub-optimality of certain coding strategies

: Recent results are mainly due to a change of perspective

from obtaining converses for coding theorems

to evaluation of inner and outer bounds (non-convex optimization problems)

9
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
broadcast channel |

strategy for the

(\[[)\[]\[3) —> Encoder

Xn

|

Decoder 1

Chandra Nair

TP (y1|)

Classical Results

(

"(y2ly1)

Cover

—> (Mo, M)

Decoder 2 —> (JL,.JL)

ISIT 2021
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the broadcast channel [Cov72]

Cover

) generic
Noise ball of the codeword
weaker receiver

Noise ball of the
stronger receiver

Codewords that share
the same /5

9
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding ! \.;_

strategy for the broadcast channel [Cov72]

Cover

Theorem: Superposition coding achievable region

The set of rate triples (R, [71, Ro) satisfying

Ro+ Ry < [(V: }fg)
Ro+ Ri+ Ry < I(X;VA|V) + I(V; Ya)
Ro+ R+ Ry < [(X:yrl)

for some p(v, ) is achievable. Here VV—e—X——(Y],Y5) is Markov. W.l.o.g.
V| <X+ 1.

rrey
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region

Degraded Gaussian broadcast channel, [Ber73]

e Use of Entropy Power Inequality to deduce Gaussian Op-
timality

Degraded discrete memoryless broadcast channel, [Gal74]

e Explicit identification of auxiliaries in the converse from
distributions induced by codebooks

Gallager

Both arguments extend to & receivers

rrey
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding ' \..-_

strategy for the broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region
Less noisy broadcast channel, [[<\N75]

e Vpy|x we have I(U;Y1) > I(U;Yz)
Projection of capacity region on 175 = 0, [[KM774]
(Degraded message sets)

e Images of a set under two noisy channels [[<\N77D]

e First use of the identity

H(YM)-HY3) =Y, (HYulY? L Y9 ,) — H(Y» YL YR )
o Staple equality for many converses or outer bounds

Marton

Chandra Nair Classical Results ISIT 2021



Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding ! \.;_

strategy for the broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region
Less noisy broadcast channel, [[<\N75]

e Vpy|x we have I(U;Y1) > I(U;Yz)
Projection of capacity region on 175 = 0, [[KM774]
(Degraded message sets)

e Images of a set under two noisy channels [[<\N77D]

e First use of the identity

H(YP)-H(Y3") =3, (H(YulY? ™, Yat,) — HYal Y, Y3, 0))
o Staple equality for many converses or outer bounds

Both results were established only for 2 receivers Miesiem

: Extension of images of a set characterization to 8 receivers
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region

More capable broadcast channel, [F] 79]
e Vpx we have I(X;Y]) > I(X;Y3).

e Equivalent: Any c-error codebook for receiver Y5 is "essen-
tially" an e-error codebook for receiver Y,

Remarks: El Gamal

e Bypasses images of a set characterization (simpler)

e The proof contained the for two receiver
broadcast channel

< Focus was on converses, not outer bounds
e Result was established only for 2 receivers
w
Classical Results ISIT 2021 6 /29




Review: Random binning based achievable region

Random binning idea

e Compression of correlated sources,
[SWT3]

Deterministic ~ Broadcast — (1977-
1978), [Gel77; Mar77; Pin7§|
o V1 = f(X),Y2 = g(X)

Semi-deterministic Broadcast (1978- Gelfand Marton

. , Pinsker
1980), [Mar79; GP80]
. Yi = f(X) |
B
Chandra Nair Classical Results ISIT 2021 7/ 29




Review: Product broadcast channels

Two independent channel components
o X = (X4, X3p), Y1 = (Y10, Y1), Yo = (Y2u, Yar)
o T1(Y1|X) = T1a(Y1a|Xa) @ T1p(Y16| Xs)
L TQ(YVZIX) — T2a<§/2a‘Xa) X T21)(Y21)|Xh)

Capacity region for reversely degraded broadcast channel

Gaussian setting, [Hug75]

Projection on Ry = 0, [Pol77]

Poltyrev

Chandra Nair
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Review: Product broadcast channels

Two independent channel components
o X = (X4, Xyp), Y1 = (Y14, Y1p), Yo = (You, Yop)
o Ti(V1]X) = T1a(Y1a|Xa) ® T1p(Y15| Xs)
L TZ(YVZ‘X) — T‘Za(Y:Za‘Xa) X T21)<Y21)|Xb)

Capacity region for reversely degraded broadcast channel

Full capacity region, [I] 80]

e Optimality of the Minkowski sum of the two individual capacity
regions El Gamal

e The product channel setting has had a surprisingly large impact on recent results

i A
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Review: Achievable Region

By combining superposition coding and random binning the
following region is achievable for any broadcast channel

Marton

Marton’s achievable region M (77,75), [Mar79]
Any rate tuple (Ro, R, R2) satisfying

Ry < min{I(W;Y7),I(W;Y3)}
Ro+ Ry < I(UW; Y1)
Ro+ Ry < I(VW;Y5)
Ro+ R1 + Ry < {I(W; Y1), I(W;Ya)} + I(U; YA|W) + I(V; Y2 |W) — I(U; VW)

for any pyvwx : (UVW)—e—X—e—(Y1, Y2) is achievable, i.e. M(T1,T>) C C(11,T?).

Caveat: This region was not computable

Chandra Nair Classical Results




Review: Evaluation of achievable regions

Two results that are in the spirit of modern results in broadcast channel

The capacity region of the degraded bi-
nary symmetric (BSC) broadcast channel,
[WZ73]
e Mrs. Gerber’s lemma to evaluate su-
perposition coding region

Evaluation of an achievable rate region for
the broadcast channel, [HP79]
e Functional representation lemma
e Reduction of M(7'.75), when X is bi- N
nary and U/, V1V are independent, to Hajek Pursley
region

© Makes the region computable

e
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Outer bound to the capacity region (mostly classical)

There was some interest in outer bounds to the capacity region 2006 - 2010

e Couple of outer bounds by

Kramer Shamai

e Outer bound [NEO7]

< Improves on the bound by Korner-Marton

o Employs an "XOR trick" to show equivalence be-
tween regions

El Gamal

Chandra Nair Mostly-classical




Outer bound to the capacity region (mostly classical)

UVW outer bound, O(7},75)
The union of rate tuples (7. 171, [75) satisfying

R() S min{I(W/; Y] ), I(VV1 YQ)}
Ry + Ri <min{I(W; Y1), I(W;Ya)} + I(U; Y1|W)
Ry + Ro <min{I(W; Y1), I(W;Ya)} + I(V; Yo |W)
Ro+ Ri + Ry < {I(W; Y1), [(W;Ya)} + I(U; VA|W) + I(X; Ya|UW)
Ro+ Ri + Ry < {I(W; Y1), [(W; Ya)} + I(V; Ya|W) + I(X; Y4 |[VIW)
for any pyyvwx : (UVW)—e—X—-e—(Y1, Y2) forms an outer bound, i.e.

C(Wy,Ws) C O(T1,T,). It suffices to consider
W < |X|+5, U] <|X|+1, V] <|X|+ 1. [NailOa]

Remarks:
e This outer bound follows from classical arguments

e The projection of this region on 7y = 0 is same as setting I/ to be constant
o UV outer bound for private messages %%Q

Chandra Nair Mostly-classical




Advances over the classical results - Main part

Investigate of
(2007-2018)

e More instances where it matches capacity region
o Evaluation of inner and outer bounds (ideas involved)

e Settings where it is sub-optimal

s
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Advances over the classical results - Main part

Investigate of
(2007-2018)

e More instances where it matches capacity region
o Evaluation of inner and outer bounds (ideas involved)

e Settings where it is sub-optimal

Investigate of and
(2008-2015)

e More instances where the bounds coincide
o Evaluation of inner and outer bounds (ideas involved)

e Settings where there is a gap between the bounds

9
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Advances over the classical results - Main part

Investigate of
(2007-2018)

e More instances where it matches capacity region
o Evaluation of inner and outer bounds (ideas involved)

e Settings where it is sub-optimal

Investigate of and
(2008-2015)

e More instances where the bounds coincide
o Evaluation of inner and outer bounds (ideas involved)

e Settings where there is a gap between the bounds

Recent advances (2019 - ) and remarks

9
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New Results: Optimality of Superposition Coding Region

the and show that it is contained inside

of the regions are optimization problems
° Therefore some optimization related insights are needed

s
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New Results: Optimality of Superposition Coding Region

the and show that it is contained inside

of the regions are optimization problems
° Therefore some optimization related insights are needed

Example: Consider 7' (y|x) ~ BSC(p) and T5(ys|x) ~ BEC(e) [NailOb]
: If 1 > ¢ > Hy(p), then neither are more-capable than the other
o If Hy(p) < ¢ then Y5 is more capable than V)
To show optimality of superposition coding region:

: Show that one can restrict to p(z) to be the Ber(é) to evaluate the UVW
outer bound

e Employs a argument

s

Chandra Nair Superposition Coding Region ISIT 2021 13 / 29



New Results: Optimality of Superposition Coding Region

the and show that it is contained inside

of the regions are optimization problems
° Therefore some optimization related insights are needed
Example: Consider 7' (y|x) ~ BSC(p) and T5(ys|x) ~ BEC(e) [NailOb]

: If 1 > ¢ > Hy(p), then neither are more-capable than the other
o If Hy(p) < ¢ then Y5 is more capable than V)
To show optimality of superposition coding region:
: Show that one can restrict to p(z) to be the Ber(%) to evaluate the UVW
outer bound

e Employs a argument

: When p(z) ~ Ber(5) show that for all [/ : [/~e—X—=—(1],Y5), we have
I(U; Y1) > 1(U; Ya).

e The maximum of the coincides with the maximum of
the function.

Brees
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New Results: Optimality of Superposition Coding Region

the and show that it is contained inside

of the regions are optimization problems
° Therefore some optimization related insights are needed

Generalization of this idea [NailOb]:
o Essentially Less Noisy
e Essentially More Capable

51”

ey
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New Results: Optimality of Superposition Coding Region

the and show that it is contained inside

of the regions are optimization problems
° Therefore some optimization related insights are needed

Generalization of this idea [NailOb]:
o Essentially Less Noisy
e Essentially More Capable

Effectively Less Noisy [[KNE15]

Nachman

9
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Superposition Coding Region - 3 or more receivers

: Image size characterization for 3 or more receivers

2. Image Size Characterization Problem. § ‘
The n-image size gy{A, ) of a set A c X” over a discrete memory- ﬁ

less channel (DMC) (W:X — ¥] is the minimum cardinality of

Bc ¥ such that WHB|x)2n for each xe€ A. The problem is to Csiszar
find, for a distribution P on X and DMCs [ Wi X->Y1,

i=1,...,k,asingle-letter characterization of the limit of the sets of all

(k + 1)-dimensional vectors

29-

1

n

log|Al, % log gw (A, M), .. ., % log gy (A, ) | .

Here A c X" is any set of P-typical sequences, and 0<n <1 is fixed
(the result is independent of 1} ).

Both problems are solved for k=2 (cf. [1]) but not for ¥=3. An
interesting (unsolved) special case of Problem 2 for k=3 is the follow-

Open problem in | |

: Less noisy, more capable, degraded message sets used image sizes

Prrey

: Past/future issue in identification of auxiliaries
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Superposition Coding Region - 3 or more receivers

e Superposition coding region is for ko = 3 [NW11]
o : Information inequality (specialized for
less noisy) to aid single-letterization
e Optimality is for k >4

V. Wang

9
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Superposition Coding Region - 3 or more receivers

e Superposition coding region is for =3 [NW11]
o : Information inequality (specialized for
less noisy) to aid single-letterization
e Optimality is for k > 4

e Superposition coding region is sub-optimal for /i = 3 [NX12]
o : Th(y1]lx) ~ BEC(e1), To(y2|x) ~
BEC(e2), T5(ys|x) ~ BSC(p)

* 0 <€ < ey = Ha(p)

o Consider the weighted sum-rate ]%1 + %
* Superposition coding region yields maximum value 1
+ Can be improved by ignoring receiver 2 (17, = 0) and

considering the capacity region of Y7, Y5.

Chandra Nair Superposition Coding Region

Xia,

ISIT 2021
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Superposition Coding Region - 3 or more receivers

Less Noisy
e Superposition coding region is optimal for k& = 3 [NW11]
o Novel ingredient: Information inequality (specialized for
less noisy) to aid single-letterization

e Optimality is open for & > 4

More capable
e Superposition coding region is sub-optimal for /i = 3 [NX12]
o "Counter Example": Ti(yi|z) ~ BEC(e1), Ta(y2|x) ~
BEC(e2), T5(ys|z) ~ BSC(p)
* 0 < € < ea = Ha(p)

Xia
Conjecture: Superposition coding region is optimal for the following setting:

m.c.

m.c. l.n.
Yi > Yo,1 > V3, Y, = Vs

Chandra Nair Superposition Coding Region




Superposition Coding Region - 3 or more receivers

Less Noisy vs More Capable

Replacing a receiver by a less noisy
receiver cannot decrease the capacity

region of a two-receiver broadcast chan- /

nel '

On the other hand, replacing a re- Geng Shamai V. Wang
ceiver by a more capable receiver

can strictly decrease the capacity re-

gion of a two-receiver broadcast channel
[Gen+13b].

Chandra Nair Superposition Coding Region




Superposition Coding Region - 3 or more receivers

Focus on two message case only (simplest setting)

e "Common" message V. to be decoded by Y7, Y5, Y3
There are two possible scenarios:
° : "Refined" message )/, to be decoded by Y

° : "Refined" message ), to be decoded by Y7 and Y5

/)

Brees
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Case A: 3-receiver degraded message sets

Case A: "Refined" message )M, to be decoded by Y]

Superposition coding region: The set of rate pairs satisfying

R, <min{I(U;Y3),I(U;Y3)}
R.+ R, <min{I(U;Y2),I(U;Y3)} + I[(X;Y1|U)
R.+ R, < I(X Yl)

for any (U/, X) : U—e—X—=—(Y7,Y5,V3) is achievable.

Chandra Nair Superposition Coding Region




Case A: 3-receiver degraded message sets

: "Refined" message )/, to be decoded by Y

Consider an setting
Mi95 to be decoded by Y7, Y5, V5
M5 to be decoded by Y7, Y5
M5 to be decoded by Y7, V5

M to be decoded by Y

Observe that the collection of decoding sets is

9
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Case A: 3-receiver degraded message sets

: "Refined" message )/, to be decoded by Y

Consider an setting
Mi95 to be decoded by Y7, Y5, V5

e M5 to be decoded by Y7, Y5
e M5 to be decoded by Y7, V3
e M to be decoded by Y]

Observe that the collection of decoding sets is
There is a natural extension of Marton’s achievable region (combining
superposition coding and mutual covering) to this setting

e The projection of the achievable region on the plane 5 = 13 =
(0 yields an achievable rate for

e There are instances when the projection is strictly larger than  El Gamal
the superposition coding region [NE09]
e One instance is a degraded erasure channel
© The above projection matches the capacity region

9
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Case B: 3-receiver degraded message sets

: "Refined" message ), to be decoded by Y7 and Y5

e M. to be decoded by Y7, Y5, V5
e M, to be decoded by Y7, Y5

Observe that the collection of decoding sets is

e A natural guess was that superposition coding was optimal

Superposition coding region: The set of rate pairs satisfying
R. < I(U;Y3)
R.+ R, <I(U;Y3) + min{I(X; Y1|U), I(X;Y2|U)}
R.+ R, <min{I(X;Y1),I(X;Y2)}

for any (U/, X) : U= X—=—(Y7],Y5,Y3) is achievable.

9
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Case B: 3-receiver degraded message sets

: "Refined" message ), to be decoded by Y7 and Y5

Superposition coding region: The set of rate pairs satisfying
R. < I(U;Y3)

R.+ R, <I(U;Y3) + min{I(X;Y;
R.+ R, <min{I(X;Y1),[(X;Y2)}

U),1(X;Ys

)

<
<

for any (U/, X)) : U~ X—e—(Y], Y5, Y3) is achievable.

>

After some years another intuition/conjecture
if and only if
suggested superposition coding may not be optimal.

This intuition also helped find possible specific counterexamples (here and in other
settings)

9
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Case B: 3-receiver degraded message sets

Product Degraded Erasure Channel
Xy — Yy : BEC(ey), Xp — Yy : BEC(ep) 0

X, — Yo : BEC(é,), Xy — Yy : BEC(&) ///
Xo —+ Za: BEC(f2), Xy — Zy: BEC(f3) :

s
Yo Ya

Cz=0=fa)+ (1= fp) %%‘/

Theorem [NY17]
For €q =1/2
€p = 1/2

Ca > fa, >eq, & e, > fb > €

>
IS)

fo=17/22
fo=9/34

D>
o
I
S =

1-letter SC' :

11

Ro+Ri <1 and MNRo+Ri<MNCz, M\ = 10

2-letter SC' 484
Ro+ R <1 and MRy + R < Oz, X = 135 Yazdanpanah

—
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Case B: 3-receiver degraded message sets

Evaluation of superposition coding regions entailed

e Symmetrization

e Representation using concave envelopes

Slope of region at axis points

Shannon-type inequalities (linear programming)

e Min-max interchange

s
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Case B: 3-receiver degraded message sets

Korner had proposed a region for the image sizes over three channels
[Kor84)

Korner

Theorem: For every RV’s T, U, and V such that
TUV - § - XYZ,

nonnegative numbers f, 1/, and ¢, the point (r,, r,, r,) with
coordinates

min [ H(X), H(X|T) + ¢, H(X|TU) + t’,
H(X|TUV) + 1), )
2 min |H(Y), H(Y|T) + 1, H(Y|TU) + ¢,

114

¥

x

~
1

H(Y|TUV) +t],
& min [H(Z), H(Z|T) +t, H(Z|TU) + ',

-
Il

Chandra Nair

H(Z|ITUV) + "]
is an element of #( X; Y; Z|S).

The same example shows that such points do no exhaust 7/(X;Y: 7

Superposition Coding Region

(30)
a]

A9>.

9
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A (very) specific open problem

Let X', X' be two n-bit binary random variables.
For /.l € {0,1,2,... . n} define
Hn(kl) = W Z H(XGS:X!)T)
kN S TCn):|S|=k,|T|=I
to be an averaged entropy function over sets of same size.

Consider the following mapping:

Pxp Xp <3}Hn QgJ , {gJ) ,%7—[71 (0,n), %Hn <BZJ | F;:J))

Let §,, be the range of this mapping and ¢ = U, G,,.

Chandra Nair Superposition Coding Region




A (very) specific open problem

Let X', X' be two n-bit binary random variables.

For k.l € {0,1,2,..., n} define

7‘[,7 (]\ [) = TN H(XuSr XbT)
(A') </) S.TCH,}%:A.T/

to be an averaged entropy function over sets of same size.

Consider the following mapping:

1 n n 1 1 5n 25n
n oL - n - . . s n ()q 2 n A 9
PX3,X; H(,ZH QzJ bD o (0m) ;. ({22J {31J>>

Let §,, be the range of this mapping and ¢ = U, G,,.

: Determine a computable characterization of G

Remarks

e Identical to asking for the capacity region of the previous example

e A simple (yet non-trivial) instance of Csiszar’s question of image-size
characterization over three channels
e The answer is known if you only had (%7—[,, (nag,npi), %7—[,, (nag, n s‘fg)) ngé

Chandra Nair Superposition Coding Region ISIT 2021 17 / 29



A (very) specific open problem

Lemma
o Hu(k,1) < Hulk + ko, + o) < BtEoltlogy (k1)
for0<ko<n—FkO0<Ilyg<n-—I.
o BholZlogy (k1) < Hyu(k — kool — o) < Ha
o (Concavity) " Hn(k1,1) + " H, (K2, 1) <
for 0 < m,ky, kol <n.

( )forogk‘ogk./()glogl.
7‘[ (Tllk‘1+(n777l)k2 ’ ])

n

With these properties we can obtain the following inequalities

nen n 25n
7‘fn(2a 5) <r7'-[n(27 374)7
1877‘l (0,n) + 77{ n(0, g) < H, (0, 23574”)7
17 2571 "
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A (very) specific open problem

Lemma
o Mk, 1) < Hp(k + ko, I+ lo) < Etholthgy (k1)
for0<ko<n—FkO0<Ilyg<n-—I.
o BholZlogy (k1) < Hyu(k — kool — o) < Ha
o (Concavity) " Hn(k1,1) + " H, (K2, 1) <
for 0 < m,ky, kol <n.

( )forogk‘ogk./()glogl.
7‘[ (77Lk1+(n777l)]€2 ’ ]>

n

A linear combination of the inequalities shows that for all p, xp

7—[( )+ H(0,n) —

160 927 30

160

160 160

85 n n 75 187 bn 25n
)] <
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A (very) specific open problem

Lemma
o Mk, 1) < Hp(k + ko, I+ lo) < Etholthgy (k1)
for0<ko<n—FkO0<Ilyg<n-—I.
o BholZlogy (k1) < Hyu(k — kool — o) < Ha
o (Concavity) " Hn(k1,1) + " H, (K2, 1) <
for 0 < m,ky, kol <n.

( )forogk‘ogk./()glogl.
7‘[ (77Lk1+(n777l)]€2 ’ ]>

n

An outer bound for the example
Any achievable (17, [?) satisfies

187 18
<1 and —
Ry + Ry < an 16ORO + R < 16

An explicit outer bound in a non-traditional way!
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Advances over the classical results - Main part

Investigate of and
(2008-2015)

e More instances where the bounds coincide
o Evaluation of inner and outer bounds (ideas involved)

e Settings where there is a gap between the bounds

s
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Advances over the classical results - Main part

Investigate of and
(2008-2015)

e More instances where the bounds coincide
o Evaluation of inner and outer bounds (ideas involved)

e Settings where there is a gap between the bounds

Very recent advances (2019 - )

s
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)
Y, =AX+Z
Y, =BX+7Z

where 7 ~ N(0,1), and A, B are matrices. Assume tr([5(XX7)) < P,

On the projection of the region on /7y = 0

e Marton’s Inner Bound and UVW outer bound co-
incide | |

Steinberg-Weingarten-Shamai

9
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)
Y, =AX+Z
Yo =BX+7Z

where Z ~ N(0,7), and A, B3 are matrices. Assume tr(I(XX")) < P,

On the projection of the region on /7y = 0
e Marton’s Inner Bound and UVW outer bound co-
incide | |
Idea:

o Identified a parameterized family of
that each had a degraded structure

Steinberg-Weingarten-Shamai

e Used Entropy Power Inequality to evaluate the
outer bound for the enhanced channel

9

rrey
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)

Y, = AX + Z
Y, =BX+7Z

where Z ~ N(0,7), and A, B3 are matrices. Assume tr(I(XX")) < P,

On the projection of the region on /7y = 0
e Marton’s Inner Bound and UVW outer bound co-
incide [WSS06]
Idea:

o Identified a parameterized family of
that each had a degraded structure

e Used Entropy Power Inequality to evaluate the
outer bound for the enhanced channel

e Used the Dirty Paper Coding [C'0s83] inspired aux-
iliaries to evaluate Marton’s Inner Bound

e Showed that these two "relaxed versions" of inner
and outer bounds coincide and sandwich the true
capacity region.

Chandra Nair Superposition Coding Region
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)
Y, =AX+Z
Yo =BX+7Z

where Z ~ N(0,7), and A, B3 are matrices. Assume tr(I(XX")) < P,

e Marton’s Inner Bound and UVW outer bound coincide [GN14]
Idea:

e Used the Dirty Paper Coding [C'0s83] inspired auxiliaries to eval-
uate Marton’s Inner Bound

e Evaluated the outer bound directly

9
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)
Y, =AX+Z
Yo =BX+7Z

where Z ~ N(0,7), and A, B3 are matrices. Assume tr(I(XX")) < P,

e Marton’s Inner Bound and UVW outer bound coincide [GN14]
Idea:

e Used the Dirty Paper Coding [C'0s83] inspired auxiliaries to eval-
uate Marton’s Inner Bound
e Evaluated the outer bound directly
o Step 1: Identify using the argu-
ments in the outer bound (with additivity only under some
independence constraints)
o Step 2: Used rotated version of two independent copies of
the maximizers and use the above argument to deduce

< 3: Use Bernstein’s characterization theorem to conclude that
optimizers must be Gaussian «
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[llustration of the Idea

Korner-Marton functional - extremal distribution
Maximize, for A > 1, the value of the functional

Coi [M(AX + Z) — AW(BX + 7))

over X : E(XXT) < K, where A, B are invertible matrices and Z ~ N(0, I).

The upper concave envelope C.[f(2)] of [ is equivalently characterized by :
e Smallest concave upper bound: C,[[(x)] :=inf, -~ / concave 9(2).

e Largest convex combination: C[f(z)] :=sup ,) E[f(X)].

o Fenchel dual characterization: C.[f(z)] = inf, (sup, (f(2) — (o, 7)) + (o, 2)) .
where the infimum is over continuous linear functional c.
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[llustration of the Idea

Korner-Marton functional - extremal distribution
Maximize, for A > 1, the value of the functional

Coi [M(AX + Z) — AW(BX + 7))

over X : E(XXT) < K, where A, B are invertible matrices and Z ~ N(0, I).

We will see that the maximum value is

WAX, + Z) — Mu(BX, + Z),

where X. ~ N(0, K') for some K/ < K.
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[llustration of the Idea

Korner-Marton functional - extremal distribution

Maximize, for A > 1, the value of the functional
Cux [R(AX + Z) — AL(BX + 2)]

over X : E(XXT) < K, where A, B are invertible matrices and Z ~ N(0, I).

We will see that the maximum value is

WAX, + Z) — Mu(BX, + Z),

where X. ~ N(0, K') for some K/ < K.

Lemma: C,  [h(AX +Z) — M(BX + 7)] is sub-additive.

Proof: For any jx, x, and /17y, v,
hAX) + Z1,AXy + Zo|U) — Au(BX, + Z1, BXy + Z5|U)

= h(AX1 + Z1|U1) — A(BX1 + Z1|Ur) + h(AXa + Z2|Us) — Ah(BX2 + Z2|Us)

—(A=1I(AX2+ Z9; BX1+ Z1|U)

)

where U] = (U, AXo + ZQ) and Uy = (U BX| + Zl)

Chandra Nair Superposition Coding Region
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[llustration of the Idea

Korner-Marton functional - extremal distribution

Maximize, for A > 1, the value of the functional
Cux [R(AX + Z) — AL(BX + 2)]

over X : E(XXT) < K, where A, B are invertible matrices and Z ~ N(0, I).

We will see that the maximum value is

WAX, + Z) — Mu(BX, + Z),

where X. ~ N(0, K') for some K/ < K.

Lemma: C,  [h(AX +Z) — M(BX + 7)] is sub-additive.
Proof: For any /iv, x,
Cox, e, M(AX) + 21, AX + Z5) — AW(BX, + Z1, BXs + Z3)]
< Cux, [P(AX1 + Z1) — A(BX1 + Z4)]
+ Cux, [M(AX2 + Z3) — A(BX2 + Z5)]

Chandra Nair Superposition Coding Region




Gaussian optimality: ctd..

Let (U/;. Xy) be a maximizer, i.e.

V =maxCuy [h(AX + Z) — A(BX + Z)| = h(AX; + Z|Uy) — M(BX; + Z|Uy).
rx

Let (X,,U,) and (X}, ;) be i.i.d. according to (I/+. X+).

Chandra Nair Superposition Coding Region




Gaussian optimality: ctd..
Let (U/;. Xy) be a maximizer, i.e.

V =maxCpy [WMAX + Z) — A(BX + Z)| = h(AX; + Z|U;) — Ah(BX; + Z|Uy).
X

Let (X,,U,) and (X}, ;) be i.i.d. according to (I/+. X+).

Setting [/ = (U,. ), X | X‘%Xb and X X”\[Xb the proof of sub-additivity
yields

2V = C'U'XLXZ VL(AXl + Z1,AXo + ZQ) — )\]I(BXl + 71, BXs + ZQ)]

px,x_)

C,”X [h(AXl + Zl) )\h(BXl + Zl)]

X

+ Cllxz [h(AXQ + ZQ) — )\h(BXQ + ZQ)]

X _
—(A = )I(AX_ + Z3: BX4 + Z1|Uq, )
<V+V
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Gaussian optimality: ctd..
Let (U/;. Xy) be a maximizer, i.e.

V =maxCuy [h(AX + Z) — A(BX + Z)| = h(AX; + Z|Uy) — M(BX; + Z|Uy).
rx

Let (X,,U,) and (X}, ;) be i.i.d. according to (I/+. X+).

Setting [/ = (U,. ), X | X“\Exb and X X“\[Xb the proof of sub-additivity
yields

2V = Cux, x, [MAX1 + Z1, AXy + Zy) — AW(BX1 + Z1, BXy + 7))

BXy,x_)

C,U)\ [h(AXl + Zl) )\h(BXl + Zl)]

X

+ C,ux2 [h(AXQ + ZQ) — )\h(BXQ + ZQ)]

Bx_
~(A\ = DI(AX_ + Z3; BX 4 + Z1|Ua, Up)
<V+V

Therefore: we get that conditioned on (U, U): X L X_.
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Gaussian optimality: ctd..
Let (U/;. Xy) be a maximizer, i.e.
V =maxCpu [h(AX + Z) — AW(BX + Z)] = h(AX; + Z|U;) — Ah(BX+ + Z|U5).
rx

Let (X,.U,) and (X, ;) be i.id. according to (U+, X;).

Note: Thus, conditioned on (/,, [/;):
e X, L X, (from construction)

o (X, + X)) L (X, X}) (from proof of sub-additivity)

Chandra Nair
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Gaussian optimality: ctd..

Let (UJ;, X;) be a maximizer, i.e.

[W(AX + Z) — AW(BX + Z)] = h(AX; + Z|Uy) — Mu(BX; + Z|U3).

7 o
V =maxC(C,
125

Let (X,,U,) and (X}, ;) be i.i.d. according to (U/;, X;).

: Thus, conditioned on (U/,, [;):
o X, L X, (from construction)
o (XN, + Xy L (X, X}) (from proof of sub-additivity)
e Implies that conditioned on (/. /;): X,. X} are Gaussian

o Characterization of Gaussians (Bernstein ’40s)
o Proof: Using characteristic functions (Fourier transforms)

9
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Gaussian optimality: ctd..

Let (UJ;, X;) be a maximizer, i.e.

[W(AX + Z) — NW(BX + 2Z)] = h(AX: + Z|U;) — AW(BX: + Z|U-).

V =maxC(C,
nx

Let (X,,U,) and (X}, ;) be i.i.d. according to (U/;, X;).

: Thus, conditioned on (U/,, [;):
o X, L X, (from construction)
o (XN, + Xy L (X, X}) (from proof of sub-additivity)
e Implies that conditioned on (/. /;): X,. X} are Gaussian

o Characterization of Gaussians (Bernstein ’40s)
o Proof: Using characteristic functions (Fourier transforms)

: There are some similarities with work of Lieb and Barthe (90s)

They also use rotations (but not information measures and its algebra)

9
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Slope at the axis points of the capacity region

The capacity region of a has the following shape.
: what is the slope of the capacity region at the points (C';,0) and (0, C5).
R
(0,C5) 4 p R1 + A5Rs

9
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Slope at the axis points of the capacity region

The capacity region of a has the following shape.
: what is the slope of the capacity region at the points (C';,0) and (0, C5).
R
(0,C5)4 p Ry 4+ A5 Ra

The slope of Marton’s achievable re-
gion (M (77,75)) the slope of UVW outer
bound (O(7',7%)) at the points (C';,0) and (0, C5).
[NKG16]

&

v

El Gamal H. Kim @

rrey
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Comparing M(T,T) with O(T1,T3)

Could it be possible that M (77,75) = O(T,.75) (and hence C(77,75))?
e Both regions are "hard" to evaluate
e M(T,T,) was not computable

e They coincided for lots of classes of channels, some with very limited structure
such as vector Gaussian

e Both bounds gave the same slope at axis points

9
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Comparing M(T},T3) with O(13, 1)

0.5

Binary skew-symmetric broadcast channel (BSSC)
Conjectured [N'W083] that for the above channel,
IU;Y1)+1(V;Ye) — I(U; V) <max{I(X;Y1),[(X;Y2)}

for any (U, V) : (U,V)—-e-X—--(Y71,Y3)

V. Wang
o If the inequality is true then max g, p,)ciir 1) 11+
Ry € (0.3615,0.3617) [HP79]
¢ On the other hand [NEOT] max p, p,ycoer n) [+ Ha €
(0.3725,0.3726)

El Gamal
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Comparing M(T},T3) with O(13, 1)

0.5
Binary skew-symmetric broadcast channel (BSSC)

Marton’s region was shown to be computable |G A09]

e Suffices to consider /| < |X|, V| < || and
W < |X| + 4 to evaluate M(T).75)

e Pertubation approach to bound cardinality of
extremal auxiliaries

o

Anantharam

Chandra Nair Superposition Coding Region
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Comparing M(T},T3) with O(13, 1)

0.5

Binary skew-symmetric broadcast channel (BSSC)

Marton’s region was shown to be computable |G A09]
e Suffices to consider /| < |X|, V| < || and
W < |X| + 4 to evaluate M(T).75)
e Pertubation approach to bound cardinality of
extremal auxiliaries

o

o Numerically verified the previous information Anantharam Gohari
inequality

e Proved that M(77,75) cannot match
O(TL,TQ) for BSSC %&9
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Comparing M(T},T3) with O(13, 1)

0.5

Binary skew-symmetric broadcast channel (BSSC)

e Proved [JN10] that for the above channel,
I(U; Y1)+ 1(V;Ye)—1(U; V) <max{I(X;Y1),I(X;Y2)}

for any (U, V) : (U,V)-e-X—-—(Y1,Y3)
o Extending the perturbation approach

Chandra Nair Superposition Coding Region




Comparing M(T},T3) with O(13, 1)

0.5

Binary skew-symmetric broadcast channel (BSSC)

Extended the same inequality to any binary input
broadcast channel [Gen - 13a], ie.

U Y)+I(V;Yy)—I(U; V) <max{I(X;Y1),[(X;Y2)}

for any (U,V) : (U,V)—--X——(Y1,Y2) Geng Jog
® MAX(R, ro)e (T 7y [T+ 2 is given by randomized-
time-division
e Immediate to evaluate the sum-rate for any binary

input broadcast channel
V. Wang
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Optimality /sub-optimality of M (7. 75) and/or O(717.75)

Known: M(77,75) is optimal if and only if
M @T1,To @ Ty) = M(T1,To) ® M(T1,T3) V(11,T3).

Chandra Nair Superposition Coding Region




Optimality /sub-optimality of M (7. 75) and/or O(717.75)

Known: M (77,7%) is optimal if and only if
J\/l(Tl X Tl,TQ (%9 Tg) = ./”M(T]. Tg) S5 ./\/l(Tl, T2> V(Tsz)

Investigated product broadcast channels [Gen - 14]

e Demonstrated a product broadcast channel where

C(Tl & T’l, T ® TZ) = ,f\/l(Tl & Tl, T5 ® TZ)

e Developed sufficient conditions for M (77,75) to be optimal
o : Min-max interchange
< Establish capacity regions of new classes of broadcast
channels
o Developed a new outer bound for product broadcast channels

Geng

4

Gohari
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Optimality /sub-optimality of M (7. 75) and/or O(717.75)

Known: M (77,7%) is optimal if and only if
J\/l(Tl X Tl,TQ (%9 Tg) = ./”M(T]. Tg) S5 ./\/l(Tl, T2> V(Tsz)

Investigated product broadcast channels [Gen - 14]
e Demonstrated a product broadcast channel where
C(Tl & Tl, T ® Tz) = J\/l(Tl X Tl-, T5 ® fz)
QC(T] , ,T2> D C(f] , 722> = ,'\/I(Tl , T2> S5} J\/l(fl , 7:2)

e Developed sufficient conditions for M (77,75) to be optimal

o : Min-max interchange

< Establish capacity regions of new classes of broadcast
channels

o Developed a new outer bound for product broadcast channels

e Demonstrated a product broadcast channel where
M QT To@Ty) =C(Ty 0Ty, Thy@Ty) C O @11, T, @ Th).

Hence, sub-optimality of O(7) © T, T ® f_>)

Geng

iy
g\
4

Gohari
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On optimality of M (77,75)
Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define

FAT.,KTQ(HX) = Cux |(A—a)H(Y1) — aH(Y2) + e {N(U; Y1) + 1(V;Ys) — I(U; V)}

Chandra Nair Superposition Coding Region



On optimality of M(7},75)

Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define
FIV () = Cuy |(A = ) H(Y1) — aH(Y2) + max {M(U;Y1) +1(ViYe) — I(U; V)
: plu,v|x

Results [AGN13; AGN19]
e To evaluate F;lalz(ux) it suffices to consider (U/, V): /| + V| <
X +1 '

o Employs the perturbation approach to obtain cardinality
bounds

2
o Feasible to get very good approximations by fine grid search Anantharam
for small || (say, || < 1)
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On optimality of M(7},75)

Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define

FTL-,TQ

No (bx) =Cux |A=a)H(Y1) —aH(Y2) + max {A(U;Y1)+I(V;Y2) —I(U;V)}

p(u,v|z)
Results [AGN13; AGN19]

e To evaluate F;:la’flé(ux) it suffices to consider (I/,V): /| + V| <
X +1 '

o Employs the perturbation approach to obtain cardinality
bounds

o Feasible to get very good approximations by fine grid search
for small | X (say, | X < 4)

o If the following sub-additivity (over product channels) holds:
Ty QT ToRT Ty, T Ty, 15
Fya " iy, 5,) < Frg(nxa) + Fyg (g,
then M(77,75) is optimal.

e Numerical simulations have not yet yielded counterexamples

e Can prove the sub-additivity when o = 0 or oo = 1.

Chandra Nair

Superposition Coding Region

2

Anantharam

Gohari

i A




On optimality of M(7},75)

Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define

FIVP () = Cuy |(A— @)H (Y1) — aH(Ys) + max (MUY + I(V;Y2) — I(U; V)}
’ p(u,v|x

Results [AGN13; AGN19]

e To evaluate F;:la’flé(ux) it suffices to consider (I/,V): /| + V| <
X +1 '

o Employs the perturbation approach to obtain cardinality
bounds <

o Feasible to get very good approximations by fine grid search Anantharam
for small | X (say, | X < 4)

o If the following sub-additivity (over product channels) holds:
Ty QT ToRT Ty, T Ty, 15
Fya " iy, 5,) < Frg(nxa) + Fyg (g,
then M(77,75) is optimal.

e Numerical simulations have not yet yielded counterexamples

Gohari
o Request: Can others also try numerical experiments.

e Can prove the sub-additivity when oo = 0 or v = 1. Qﬁégﬁg
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On optimality of M(7},75)

Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define
FIV () = Cuy |(A = ) H(Y1) — aH(Y2) + max {M(U;Y1) +1(ViYe) — I(U; V)
: plu,v|x

Results [AGN13; AG\IJQ]
e To evaluate F . lz(,ux) it suffices to consider (U/, V): /| + V| <

||+ 1
o Employs the perturbation approach to obtain cardinality
bounds <
o Feasible to get very good approximations by fine grid search Anantharam
for small || (say, || < 1)

e If the following sub-additivity (over product channels) holds:
T T, T2@1T: T,T: 11,1
F,\i\x nhe Z(H)(l)()SFl Z(HXl) F)\j}, (M

)
then M (77, 7) is optimal.

e Numerical simulations have not yet yielded counterexamples Gohari

e Can prove the sub-additivity when o = 0 or oo = 1.
Therefore current evidence points to a potential optimality of M (717, T»). Q&
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On optimality of M(7},75)

Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define

F,\Tj;Tz(NX) =Cuy |A—a)H (Y1) — aH(Y2) + p%il‘%‘)i) {N(U; Y1)+ 1(V;Y2) — I(U; V) }

A natural extension (projection of upward
closed decoding sets) of Martons region to
three receivers is shown to be strictly sub-
optimal. [PP 18]

e Used algebraic structured codes

Padakandla Pradhan
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On optimality of M(7},75)
Let 7' (y;|z) and T5(ys|x) be given channels, o € [0, 1], and A > 1. Define

F{(px) o= Cuy (A= a)H (Y1) — aH(Y2) + max {M(U;Yy) + I1(V:Ya) — I(U;V)}

p(u,v|x)

A natural extension (projection of upward
closed decoding sets) of Martons region to
three receivers is shown to be strictly sub-
optimal. [PP 18]

e Used algebraic structured codes

Padakandla

Structured codes traces origins in network
information theory to

e Modulo-two-sum problem [[X\M79]

Koérner Marton g&@
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Advances over the classical results - Main part

[ ]

<
[ ]
[ ]

<
[ ]

Recent advances (2019 - ) and remarks

9
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Recent Advances

Blackwell broadcast channel BEC(¢)

Erased Blackwell Broadcast Channel

e What is the capacity region of the above channel?

e Isit (1 —¢€) x C(Blackwell)?
o Outer bounds seem to suggest so (each mutual information
term of the form /(U/;Y;|1) scales by (1 —¢))

e On the other hand, M(Blackwell) has a term /(I/: 1) that does Gohari
not scale by (1 — ¢)

9
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Recent Advances

Blackwell broadcast channel BEC(¢)

Erased Blackwell Broadcast Channel

e The capacity region C (1 — ¢)C(Blackwell) [GN20]
o Notion of "auxiliary receiver" to develop two new outer
bounds for broadcast channel (both strictly improve on

O(Th, 1))
o The capacity region is still for this setting
o Even determining the of the form (1 — ¢, 17) Gohari
is . @

rrey
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Concluding Remarks

The ideas involved in developing these results have proved useful in other settings as
well

e Sub-optimality of Han-Kobayashi achievable region for the Interference channel
o Ideas involved in evaluation of the regions (non-covex optimization problems)
e New outer bounds in Interference, Relay etc
o Auxiliary receiver approach

¢ (Re)-discovered connections to hypercontractivity

9
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o Ideas involved in evaluation of the regions (non-covex optimization problems)
e New outer bounds in Interference, Relay etc

o Auxiliary receiver approach

¢ (Re)-discovered connections to hypercontractivity
Working on these settings also gave rise to a

o Global tensorization if and only if local tensorization for a family of functionals
(that frequently arise in multiuser settings) | |

e Some counterexamples were inspired by this meta-conjecture
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Concluding Remarks

The ideas involved in developing these results have proved useful in other settings as
well

e Sub-optimality of Han-Kobayashi achievable region for the Interference channel
o Ideas involved in evaluation of the regions (non-covex optimization problems)
e New outer bounds in Interference, Relay etc

o Auxiliary receiver approach

¢ (Re)-discovered connections to hypercontractivity

Working on these settings also gave rise to a

o Global tensorization if and only if local tensorization for a family of functionals
(that frequently arise in multiuser settings) | |

e Some counterexamples were inspired by this meta-conjecture
Most of the progress have been achieved by considering the oxymoronic
instances.

e Listed a few problems of the above flavor in this talk as well

9
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Thanks

e My collaborators for this wonderful journey
e The organizers for the opportunity

e The virtual audience for sparing your valuable time
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An Observation

: Family of functionals that showed up in network information theory

Z asH(Xg), ag € R.
SCln]

Usually, one is interested in testing the sub-additivity of

CuxlasH(Xg)].

This is equivalent to testing a global tensorization property.

Definition
A functional > ¢, cvs/1(Xs) is said to satisfy global tensorization if a product
distribution maximizes (:,(71,72) for all 7,75, where

Gly(y1,m) == Y asH(X1s, Xas) — E(n(X1)) — B(12(Xa2))
SCln]

4
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An Observation

Definition
A functional >, g H (Xg) is said to satisfy local tensorization if the product

of local maximizers of (/' (v;) and GG/?(7,) is a local maximizer of G/, (71,72)
for all 71,79, where

GH(m) = Y asH(Xis) — B(n(X1))

SC[n]

Gh(7y2) = Z asH(Xas) — E(72(X2))
SC[n]

Gly(m,7) = Y asH(X1s, Xaos) — E(11(X1)) — E(12(X2))
SCin]

Chandra Nair Superposition Coding Region




An Observation

Definition

A functional >, g H (Xg) is said to satisfy local tensorization if the product
of local maximizers of (/' (v;) and GG/?(7,) is a local maximizer of G/, (71,72)
for all 71,79, where

GH(m) = Y asH(Xis) — B(n(X1))
SCln]

G(12) == > asH(Xas) — E(12(X2))
SCln]

Gly(y1,72) == ) asH(Xis, Xas) — E(n(X1)) — E(12(Xa2))
SC|n]

Observation (Conjecture)

For functionals in this family global tensorization holds if and only if local
tensorization holds

4

Note: Similarity to testing concavity using a local (second derivative) condition g&
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