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Broadcast Channel

Downlink Communication: From antenna to users in a cell

Mathematical Abstraction [Cover 1972]
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Memoryless Broadcast Channel

(M0,M1,M2) Encoder
Xn

T⊗n1 (y1|x)

T⊗n2 (y2|x)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

(R0, R1, R2) is achievable: ∃ a sequence of encoding maps and decoding maps
such that, as n→∞,

P
(
{(M̂0, M̂1) 6= (M0,M1)} ∪ {(M̃0, M̃1) 6= (M0,M1)}

)
→ 0,

when
(M0,M1,M2) ∼ Uni

(
[1 :

⌊
2nR0

⌋
]× [1 :

⌊
2nR1

⌋
]× [1 :

⌊
2nR2

⌋
]
)
.

Capacity Region, C(T1, T2): the closure of the set of all achievable (R0, R1, R2).

Goal: A computable characterization of the capacity region. (open)
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Y n
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Y n
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Decoder 2
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Computable characterization
max(R0,R1,R2)∈C(T1,T2) λ0R0 + λ1R1 + λ2R2: expressed as a maximum of a continuous
function over a compact set

This implies that ∃ Turing machine that can solve the weak membership problem
[Corollary 6.2.5 in K. Weihrauch. Computable Analysis: An Introduction. Berlin, Heidelberg:
Springer-Verlag, 2000. isbn: 3540668179]

Capacity Region, C(T1, T2): the closure of the set of all achievable (R0, R1, R2).

Goal: A computable characterization of the capacity region. (open)
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This talk

• Review: Results from the classical period (1972-1982)

• Main: Results from the recent era (2004 - )

� Capacity regions for new classes of channels

� Optimality/Sub-optimality of certain coding strategies

My take: Recent results are mainly due to a change of perspective

from obtaining converses for coding theorems
to evaluation of inner and outer bounds (non-convex optimization problems)
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the degraded broadcast channel [Cov72]

Cover

(M0,M1,M2) Encoder
Xn

T⊗n
1 (y1|x)

Y n
1

T̂⊗n
2 (y2|y1)

Y n
2

Decoder 2

Decoder 1
Y n
1

(M̂0, M̂1)

(M̃0, M̃2)
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the degraded broadcast channel [Cov72]

Cover

Codewords that share
the same M2

X n
Noise ball of the
weaker receiver

Noise ball of the
stronger receiver

generic
codeword
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the degraded broadcast channel [Cov72]

Cover

Theorem: Superposition coding achievable region
The set of rate triples (R0, R1, R2) satisfying

R0 +R2 ≤ I(V ;Y2)

R0 +R1 +R2 ≤ I(X;Y1|V ) + I(V ;Y2)

R0 +R1 +R2 ≤ I(X;Y1)

for some p(v, x) is achievable. Here V X (Y1, Y2) is Markov. W.l.o.g.
|V| ≤ |X |+ 1.
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the degraded broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region

Degraded Gaussian broadcast channel, [Ber73]
• Use of Entropy Power Inequality to deduce Gaussian Op-

timality

Degraded discrete memoryless broadcast channel, [Gal74]
• Explicit identification of auxiliaries in the converse from

distributions induced by codebooks

Bergmans

Gallager

Both arguments extend to k receivers
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the degraded broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region
Less noisy broadcast channel, [KM75]
• ∀pU |X we have I(U ;Y1) ≥ I(U ;Y2)

Projection of capacity region on R2 = 0, [KM77a]
(Degraded message sets)
• Images of a set under two noisy channels [KM77b]
• First use of the identity
H(Y n

1 )−H(Y n
2 ) =

∑
i=1

(
H(Y1i|Y i−1

1 , Y n
2i+1)−H(Y2i|Y i−1

1 , Y n
2i+1)

)
� Staple equality for many converses or outer bounds

Both results were established only for 2 receivers

Open: Extension of images of a set characterization to 3 receivers

Körner

Marton
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Review: Superposition coding idea for the broadcast channel

Superposition coding was developed as an achievable coding
strategy for the degraded broadcast channel [Cov72]

Cover

Optimality of Superposition Coding Region

More capable broadcast channel, [El 79]
• ∀pX we have I(X;Y1) ≥ I(X;Y2).
• Equivalent: Any ε-error codebook for receiver Y2 is "essen-

tially" an ε-error codebook for receiver Y1

Remarks:
• Bypasses images of a set characterization (simpler)
• The proof contained theUV outer bound for two receiver

broadcast channel
� Focus was on converses, not outer bounds

• Result was established only for 2 receivers

El Gamal
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Review: Random binning based achievable region

Random binning idea
• Compression of correlated sources,

[SW73]

Slepian Wolf

Optimality of random binning based achievable region

Deterministic Broadcast (1977-
1978), [Gel77; Mar77; Pin78]
• Y1 = f(X), Y2 = g(X)

Semi-deterministic Broadcast (1978-
1980), [Mar79; GP80]
• Y1 = f(X)

Gelfand Marton Pinsker

Chandra Nair Classical Results ISIT 2021 7 / 29



Review: Product broadcast channels

Two independent channel components
• X = (Xa, Xb), Y1 = (Y1a, Y1b), Y2 = (Y2a, Y2b)
• T1(Y1|X) = T1a(Y1a|Xa)⊗ T1b(Y1b|Xb)
• T2(Y2|X) = T2a(Y2a|Xa)⊗ T2b(Y2b|Xb)

Capacity region for reversely degraded broadcast channel

Gaussian setting, [Hug75]

Projection on R0 = 0, [Pol77]

Hughes-Hartogs

Poltyrev
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Review: Product broadcast channels

Two independent channel components
• X = (Xa, Xb), Y1 = (Y1a, Y1b), Y2 = (Y2a, Y2b)
• T1(Y1|X) = T1a(Y1a|Xa)⊗ T1b(Y1b|Xb)
• T2(Y2|X) = T2a(Y2a|Xa)⊗ T2b(Y2b|Xb)

Capacity region for reversely degraded broadcast channel

Full capacity region, [El 80]

• Optimality of the Minkowski sum of the two individual capacity
regions El Gamal

• The product channel setting has had a surprisingly large impact on recent results
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Review: Achievable Region

By combining superposition coding and random binning the
following region is achievable for any broadcast channel

Marton

Marton’s achievable regionM(T1, T2), [Mar79]

Any rate tuple (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y1), I(W ;Y2)}
R0 +R1 ≤ I(UW ;Y1)

R0 +R2 ≤ I(VW ;Y2)

R0 +R1 +R2 ≤ {I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W ) + I(V ;Y2|W )− I(U ;V |W )

for any pUVWX : (UVW ) X (Y1, Y2) is achievable, i.e. M(T1, T2) ⊆ C(T1, T2).

Caveat: This region was not computable
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Review: Evaluation of achievable regions

Two results that are in the spirit of modern results in broadcast channel

The capacity region of the degraded bi-
nary symmetric (BSC) broadcast channel,
[WZ73]
• Mrs. Gerber’s lemma to evaluate su-

perposition coding region

Evaluation of an achievable rate region for
the broadcast channel, [HP79]
• Functional representation lemma
• Reduction ofM(T1, T2), when X is bi-

nary and U, V,W are independent, to
randomized time-division region
� Makes the region computable

Wyner

Hajek

Ziv

Pursley
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Outer bound to the capacity region (mostly classical)

There was some interest in outer bounds to the capacity region 2006 - 2010

• Couple of outer bounds by

Kramer Liang Shamai

• Outer bound [NE07]

� Improves on the bound by Körner-Marton

� Employs an "XOR trick" to show equivalence be-
tween regions

El Gamal

Chandra Nair Mostly-classical ISIT 2021 11 / 29



Outer bound to the capacity region (mostly classical)

UVW outer bound, O(T1, T2)
The union of rate tuples (R0, R1, R2) satisfying

R0 ≤ min{I(W ;Y1), I(W ;Y2)}
R0 +R1 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W )

R0 +R2 ≤ min{I(W ;Y1), I(W ;Y2)}+ I(V ;Y2|W )

R0 +R1 +R2 ≤ {I(W ;Y1), I(W ;Y2)}+ I(U ;Y1|W ) + I(X;Y2|UW )

R0 +R1 +R2 ≤ {I(W ;Y1), I(W ;Y2)}+ I(V ;Y2|W ) + I(X;Y1|VW )

for any pUVWX : (UVW ) X (Y1, Y2) forms an outer bound, i.e.
C(W1,W2) ⊆ O(T1, T2). It suffices to consider
|W| ≤ |X |+ 5, |U| ≤ |X |+ 1, |V| ≤ |X |+ 1. [Nai10a]

Remarks:
• This outer bound follows from classical arguments
• The projection of this region on R0 = 0 is same as setting W to be constant

� UV outer bound for private messages

Chandra Nair Mostly-classical ISIT 2021 11 / 29



Advances over the classical results - Main part

Investigate optimality/sub-optimality of superposition coding region
(2007-2018)

• More instances where it matches capacity region
� Evaluation of inner and outer bounds (ideas involved)

• Settings where it is sub-optimal

Investigate optimality/sub-optimality of Marton’s inner bound and UVW
outer bound (2008-2015)

• More instances where the bounds coincide
� Evaluation of inner and outer bounds (ideas involved)

• Settings where there is a gap between the bounds

Recent advances (2019 - ) and remarks
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New Results: Optimality of Superposition Coding Region

Idea: Evaluate the UVW Outer bound and show that it is contained inside
Superposition Coding Region

Difficulty: Evaluation of the regions are non-convex optimization problems
• Therefore, some optimization related insights are needed

Chandra Nair Superposition Coding Region ISIT 2021 13 / 29



New Results: Optimality of Superposition Coding Region

Idea: Evaluate the UVW Outer bound and show that it is contained inside
Superposition Coding Region

Difficulty: Evaluation of the regions are non-convex optimization problems
• Therefore, some optimization related insights are needed

Example: Consider T1(y1|x) ∼ BSC(p) and T2(y2|x) ∼ BEC(ε) [Nai10b]

Note: If 1 > ε > H2(p), then neither are more-capable than the other
• If H2(p) ≤ ε then Y2 is more capable than Y1

To show optimality of superposition coding region:

Step 1: Show that one can restrict to p(x) to be the Ber(12) to evaluate the UVW
outer bound
• Employs a symmetrization argument

Step 2: When p(x) ∼ Ber(12) show that for all U : U X (Y1, Y2), we have
I(U ;Y1) ≥ I(U ;Y2).
• The maximum of the upper concave envelope coincides with the maximum of

the function.
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New Results: Optimality of Superposition Coding Region

Idea: Evaluate the UVW Outer bound and show that it is contained inside
Superposition Coding Region

Difficulty: Evaluation of the regions are non-convex optimization problems
• Therefore, some optimization related insights are needed

Generalization of this idea [Nai10b]:
• Essentially Less Noisy
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New Results: Optimality of Superposition Coding Region

Idea: Evaluate the UVW Outer bound and show that it is contained inside
Superposition Coding Region

Difficulty: Evaluation of the regions are non-convex optimization problems
• Therefore, some optimization related insights are needed

Generalization of this idea [Nai10b]:
• Essentially Less Noisy
• Essentially More Capable

Effectively Less Noisy [KNE15]

El Gamal H. Kim Nachman
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Superposition Coding Region - 3 or more receivers

Main Issue: Image size characterization for 3 or more receivers

Open problem in [CG87]

Csiszar

Note: Less noisy, more capable, degraded message sets used image sizes

For insiders: Past/future issue in identification of auxiliaries
Chandra Nair Superposition Coding Region ISIT 2021 14 / 29



Superposition Coding Region - 3 or more receivers

Less Noisy
• Superposition coding region is optimal for k = 3 [NW11]
� Novel ingredient: Information inequality (specialized for

less noisy) to aid single-letterization
• Optimality is open for k ≥ 4

More capable
• Superposition coding region is sub-optimal for k = 3 [NX12]
� "Counter Example": T1(y1|x) ∼ BEC(ε1), T2(y2|x) ∼
BEC(ε2), T3(y3|x) ∼ BSC(p)
? 0 < ε1 < ε2 = H2(p)

V. Wang

Xia
Conjecture: Superposition coding region is optimal for the following setting:

Y1
m.c.
� Y2, Y1

m.c.
� Y3, Y2

l.n.
� Y3.
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? 0 < ε1 < ε2 = H2(p)

� Consider the weighted sum-rate R1
1−ε1 + R2+R3

1−ε2
? Superposition coding region yields maximum value 1
? Can be improved by ignoring receiver 2 (R2 = 0) and

considering the capacity region of Y1, Y3.

V. Wang

Xia

Conjecture: Superposition coding region is optimal for the following setting:

Y1
m.c.
� Y2, Y1

m.c.
� Y3, Y2

l.n.
� Y3.
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Superposition Coding Region - 3 or more receivers

Less Noisy vs More Capable

Replacing a receiver by a less noisy
receiver cannot decrease the capacity
region of a two-receiver broadcast chan-
nel

On the other hand, replacing a re-
ceiver by a more capable receiver
can strictly decrease the capacity re-
gion of a two-receiver broadcast channel
[Gen+13b].

Geng Shamai V. Wang
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Superposition Coding Region - 3 or more receivers

Degraded message sets

Focus on two message case only (simplest setting)
• "Common" message Mc to be decoded by Y1, Y2, Y3

There are two possible scenarios:
• Case A: "Refined" message Mr to be decoded by Y1

• Case B: "Refined" message Mr to be decoded by Y1 and Y2

Chandra Nair Superposition Coding Region ISIT 2021 14 / 29



Case A: 3-receiver degraded message sets

Case A: "Refined" message Mr to be decoded by Y1

Superposition coding region: The set of rate pairs satisfying

Rc ≤ min{I(U ;Y2), I(U ;Y3)}
Rc +Rr ≤ min{I(U ;Y2), I(U ;Y3)}+ I(X;Y1|U)

Rc +Rr ≤ I(X;Y1)

for any (U,X) : U X (Y1, Y2, Y3) is achievable.

Chandra Nair Superposition Coding Region ISIT 2021 15 / 29



Case A: 3-receiver degraded message sets

Case A: "Refined" message Mr to be decoded by Y1

Consider an augmented setting
• M123 to be decoded by Y1, Y2, Y3
• M12 to be decoded by Y1, Y2
• M13 to be decoded by Y1, Y3
• M1 to be decoded by Y1

Observe that the collection of decoding sets is upward closed

There is a natural extension of Marton’s achievable region (combining
superposition coding and mutual covering) to this setting
• The projection of the achievable region on the plane R12 = R13 =
0 yields an achievable rate for Case A
• There are instances when the projection is strictly larger than

the superposition coding region [NE09]
• One instance is a product degraded erasure channel
� The above projection matches the capacity region

El Gamal
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Case B: 3-receiver degraded message sets

Case B: "Refined" message Mr to be decoded by Y1 and Y2

• Mc to be decoded by Y1, Y2, Y3
• Mr to be decoded by Y1, Y2

Observe that the collection of decoding sets is upward closed
• A natural guess was that superposition coding was optimal

Superposition coding region: The set of rate pairs satisfying

Rc ≤ I(U ;Y3)

Rc +Rr ≤ I(U ;Y3) + min{I(X;Y1|U), I(X;Y2|U)}
Rc +Rr ≤ min{I(X;Y1), I(X;Y2)}

for any (U,X) : U X (Y1, Y2, Y3) is achievable.

After some years another intuition/conjecture

global tensorization if and only if local tensorization

suggested superposition coding may not be optimal.

This intuition also helped find possible specific counterexamples (here and in other
settings)
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Case B: 3-receiver degraded message sets
Product Degraded Erasure Channel
Xa → Ya : BEC(ea), Xb → Yb : BEC(eb)

Xa → Ŷa : BEC(êa), Xb → Ŷb : BEC(êb)

Xa → Za : BEC(fa), Xb → Zb : BEC(fb)

êa ≥ fa ≥ ea & eb ≥ fb ≥ êb

CZ = (1− fa) + (1− fb)

Xa

Xb

Ya

Ŷb

Za

Zb

Ŷa

Yb

0

1

1

0

0

1

1

0

E

E

ωa1

ωb1

ωa2

ωb2

ωa3

ωb3

ωa1

ωb1

ωa2

ωb2

ωa3

ωb3

Theorem [NY17]
For ea = 1/2 êa = 1 fa = 17/22

eb = 1/2 êb = 0 fb = 9/34

1-letter SC :
R0 +R1 ≤ 1 and λ1R0 +R1 ≤ λ1CZ , λ1 =

11

10

2-letter SC :
R0 +R1 ≤ 1 and λ2R0 +R1 ≤ λ2CZ , λ2 =

484

435 Yazdanpanah
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Case B: 3-receiver degraded message sets

Evaluation of superposition coding regions entailed
• Symmetrization

• Representation using concave envelopes

• Slope of region at axis points

• Shannon-type inequalities (linear programming)

• Min-max interchange
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Case B: 3-receiver degraded message sets
Körner had proposed a region for the image sizes over three channels
[Kör84]

Körner

The same example shows that such points do no exhaust H (X;Y ;Z|S).
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A (very) specific open problem

Let Xn
a , X

n
b be two n-bit binary random variables.

For k, l ∈ {0, 1, 2, . . . , n} define

Hn(k, l) =
1(

n
k

)(
n
l

) ∑
S,T⊆[n]:|S|=k,|T |=l

H(XaS , XbT )

to be an averaged entropy function over sets of same size.

Consider the following mapping:

pXn
a ,X

n
b
7→
(
1

n
Hn
(⌊n

2

⌋
,
⌊n
2

⌋)
,
1

n
Hn (0, n) ,

1

n
Hn
(⌊

5n

22

⌋
,

⌊
25n

34

⌋))
Let Gn be the range of this mapping and G = ∪nGn.

Question: Determine a computable characterization of G

Remarks
• Identical to asking for the capacity region of the previous example
• A simple (yet non-trivial) instance of Csiszar’s open question of image-size

characterization over three channels
• The answer is known if you only had

(
1
nHn (nα1, nβ1) ,

1
nHn (nα2, nβ2)

)
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A (very) specific open problem

Lemma

• Hn(k, l) ≤ Hn(k + k0, l + l0) ≤ k+k0
k

l+l0
l Hn(k, l)

for 0 ≤ k0 ≤ n− k, 0 ≤ l0 ≤ n− l.
• k−k0

k
l−l0
l Hn(k, l) ≤ Hn(k − k0, l − l0) ≤ Hn(k, l) for 0 ≤ k0 ≤ k, 0 ≤ l0 ≤ l.

• (Concavity) m
nHn(k1, l) +

n−m
n Hn(k2, l) ≤ Hn

(
mk1+(n−m)k2

n , l
)

for 0 ≤ m, k1, k2, l ≤ n.

With these properties we can obtain the following inequalities

Hn(
n

2
,
n

2
) ≤ Hn(

n

2
,
25n

34
),

5

11
Hn(

n

2
,
25n

34
) +

6

11
Hn(0,

25n

34
) ≤ H(5n

22
,
25n

34
),

8

17
Hn(0, n) +

9

17
Hn(0,

n

2
) ≤ Hn(0,

25n

34
),

17

25
Hn(0,

25n

34
) ≤ Hn(0,

n

2
).
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A (very) specific open problem

Lemma

• Hn(k, l) ≤ Hn(k + k0, l + l0) ≤ k+k0
k

l+l0
l Hn(k, l)

for 0 ≤ k0 ≤ n− k, 0 ≤ l0 ≤ n− l.
• k−k0

k
l−l0
l Hn(k, l) ≤ Hn(k − k0, l − l0) ≤ Hn(k, l) for 0 ≤ k0 ≤ k, 0 ≤ l0 ≤ l.

• (Concavity) m
nHn(k1, l) +

n−m
n Hn(k2, l) ≤ Hn

(
mk1+(n−m)k2

n , l
)

for 0 ≤ m, k1, k2, l ≤ n.

A linear combination of the inequalities shows that for all pXn
a ,X

n
b

1

n

(
85

160
H(n

2
,
n

2
) +

75

160
H(0, n)− 187

160
H(5n

22
,
25n

34
)

)
≤ 0
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A (very) specific open problem

Lemma

• Hn(k, l) ≤ Hn(k + k0, l + l0) ≤ k+k0
k

l+l0
l Hn(k, l)

for 0 ≤ k0 ≤ n− k, 0 ≤ l0 ≤ n− l.
• k−k0

k
l−l0
l Hn(k, l) ≤ Hn(k − k0, l − l0) ≤ Hn(k, l) for 0 ≤ k0 ≤ k, 0 ≤ l0 ≤ l.

• (Concavity) m
nHn(k1, l) +

n−m
n Hn(k2, l) ≤ Hn

(
mk1+(n−m)k2

n , l
)

for 0 ≤ m, k1, k2, l ≤ n.

An outer bound for the example
Any achievable (R0, R1) satisfies

R0 +R1 ≤ 1 and
187

160
R0 +R1 ≤

18

16
.

An explicit outer bound in a non-traditional way!
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Advances over the classical results - Main part

Investigate optimality/sub-optimality of superposition coding region (2007-2018)

• More instances where it matches capacity region
� Evaluation of inner and outer bounds (ideas involved)

• Settings where it is sub-optimal

Investigate optimality/sub-optimality of Marton’s inner bound and UVW
outer bound (2008-2015)

• More instances where the bounds coincide
� Evaluation of inner and outer bounds (ideas involved)

• Settings where there is a gap between the bounds

Very recent advances (2019 - )
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)

Y1 = AX+ Z

Y2 = BX+ Z

where Z ∼ N (0, I), and A,B are matrices. Assume tr(E(XXT )) ≤ P .

On the projection of the region on R0 = 0

• Marton’s Inner Bound and UVW outer bound co-
incide [WSS06]

Idea:
• Identified a parameterized family of channel en-
hancements that each had a degraded structure
• Used Entropy Power Inequality to evaluate the

outer bound for the enhanced channel

• Used the Dirty Paper Coding [Cos83] inspired aux-
iliaries to evaluate Marton’s Inner Bound
• Showed that these two "relaxed versions" of inner

and outer bounds coincide and sandwich the true
capacity region.

Steinberg-Weingarten-Shamai

Costa
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Vector Gaussian Broadcast Channel

Consider the broadcast channel (of interest in multi-antenna wireless communication)

Y1 = AX+ Z

Y2 = BX+ Z

where Z ∼ N (0, I), and A,B are matrices. Assume tr(E(XXT )) ≤ P .

For the entire capacity region
• Marton’s Inner Bound and UVW outer bound coincide [GN14]

Idea:
• Used the Dirty Paper Coding [Cos83] inspired auxiliaries to eval-

uate Marton’s Inner Bound
• Evaluated the outer bound directly

� Step 1: Identify sub-additive functionals using the argu-
ments in the outer bound (with additivity only under some
independence constraints)

� Step 2: Used rotated version of two independent copies of
the maximizers and use the above argument to deduce in-
dependence of the rotated versions

� 3: Use Bernstein’s characterization theorem to conclude that
optimizers must be Gaussian

Geng
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Illustration of the Idea

Korner-Marton functional - extremal distribution
Maximize, for λ > 1, the value of the functional

CµX [h(AX + Z)− λh(BX + Z)]

over X : E(XXT ) � K, where A,B are invertible matrices and Z ∼ N (0, I).

The upper concave envelope Cx[f(x)] of f is equivalently characterized by :

• Smallest concave upper bound: Cx[f(x)] := infg ≥ f concave g(x).

• Largest convex combination: Cx[f(x)] := sup p(x̃)

E[X̃]=x

E[f(X̃)].

• Fenchel dual characterization: Cx[f(x)] := infα (supx̂ (f(x̂)− 〈α, x̂〉) + 〈α, x〉) ,
where the infimum is over continuous linear functional α.
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Korner-Marton functional - extremal distribution
Maximize, for λ > 1, the value of the functional

CµX [h(AX + Z)− λh(BX + Z)]

over X : E(XXT ) � K, where A,B are invertible matrices and Z ∼ N (0, I).

We will see that the maximum value is

h(AX∗ + Z)− λh(BX∗ + Z),

where X∗ ∼ N (0,K ′) for some K ′ � K.

Lemma: CµX [h(AX + Z)− λh(BX + Z)] is sub-additive.

Proof: For any µX1,X2

h(AX1 + Z1, AX2 + Z2|U)− λh(BX1 + Z1, BX2 + Z2|U)

= h(AX1 + Z1|U,AX2 + Z2)− λh(BX1 + Z1|U,AX2 + Z2)

+ h(AX2 + Z2|U,BX1 + Z1)− λh(BX2 + Z2|U,BX1 + Z1)

−(λ− 1)I(AX2 + Z2;BX1 + Z1|U)
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Gaussian optimality: ctd..

Let (U†, X†) be a maximizer, i.e.

V = max
µX
CµX [h(AX + Z)− λh(BX + Z)] = h(AX† + Z|U†)− λh(BX† + Z|U†).

Let (Xa, Ua) and (Xb, Ub) be i.i.d. according to (U†, X†).

Note: Thus, conditioned on (Ua, Ub):
• Xa ⊥ Xb (from construction)
• (Xa +Xb) ⊥ (Xa −Xb) (from proof of sub-additivity)

• Implies that conditioned on (Ua, Ub): Xa, Xb are Gaussian
� Characterization of Gaussians (Bernstein ’40s)
� Proof: Using characteristic functions (Fourier transforms)

Note: There are some similarities with work of Lieb and Barthe (90s)

They also use rotations (but not information measures and its algebra)
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∣∣∣
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� Characterization of Gaussians (Bernstein ’40s)
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They also use rotations (but not information measures and its algebra)
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Slope at the axis points of the capacity region

The capacity region of a generic broadcast channel has the following shape.

Question: what is the slope of the capacity region at the points (C1, 0) and (0, C2).

R2

(0, C2)

R1
(C1, 0)

λ∗1R1 +R2

R1 + λ∗2R2

Theorem: The slope of Marton’s achievable re-
gion (M(T1, T2)) matches the slope of UVW outer
bound (O(T1, T2)) at the points (C1, 0) and (0, C2).
[NKG16]

El Gamal H. Kim
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Question: what is the slope of the capacity region at the points (C1, 0) and (0, C2).

R2

(0, C2)

R1
(C1, 0)

λ∗1R1 +R2

R1 + λ∗2R2

Theorem: The slope of Marton’s achievable re-
gion (M(T1, T2)) matches the slope of UVW outer
bound (O(T1, T2)) at the points (C1, 0) and (0, C2).
[NKG16]
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ComparingM(T1, T2) with O(T1, T2)

Could it be possible thatM(T1, T2) = O(T1, T2) (and hence C(T1, T2))?

• Both regions are "hard" to evaluate

• M(T1, T2) was not computable

• They coincided for lots of classes of channels, some with very limited structure
such as vector Gaussian

• Both bounds gave the same slope at axis points
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ComparingM(T1, T2) with O(T1, T2)

X

Y1

Y2

0.5

0.5

0.5

0.5

Binary skew-symmetric broadcast channel (BSSC)

Conjectured [NW08] that for the above channel,

I(U ;Y1) + I(V ;Y2)− I(U ;V ) ≤ max{I(X;Y1), I(X;Y2)}

for any (U, V ) : (U, V ) X (Y1, Y2)

• If the inequality is true then max(R1,R2)∈M(T1,T2)R1 +
R2 ∈ (0.3615, 0.3617) [HP79]
• On the other hand [NE07] max(R1,R2)∈O(T1,T2)R1+R2 ∈
(0.3725, 0.3726)

V. Wang

El Gamal
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ComparingM(T1, T2) with O(T1, T2)

X
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Binary skew-symmetric broadcast channel (BSSC)

Marton’s region was shown to be computable [GA09]
• Suffices to consider |U| ≤ |X |, |V| ≤ |X | and
|W| ≤ |X |+ 4 to evaluateM(T1, T2)

• Pertubation approach to bound cardinality of
extremal auxiliaries

• Numerically verified the previous information
inequality
• Proved that M(T1, T2) cannot match
O(T1, T2) for BSSC

Anantharam Gohari
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ComparingM(T1, T2) with O(T1, T2)
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Binary skew-symmetric broadcast channel (BSSC)

• Proved [JN10] that for the above channel,

I(U ;Y1)+I(V ;Y2)−I(U ;V ) ≤ max{I(X;Y1), I(X;Y2)}

for any (U, V ) : (U, V ) X (Y1, Y2)

� Extending the perturbation approach Jog
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ComparingM(T1, T2) with O(T1, T2)
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Binary skew-symmetric broadcast channel (BSSC)

Extended the same inequality to any binary input
broadcast channel [Gen+13a], i.e.

I(U ;Y1)+I(V ;Y2)−I(U ;V ) ≤ max{I(X;Y1), I(X;Y2)}

for any (U, V ) : (U, V ) X (Y1, Y2)

• max(R1,R2)∈M(T1,T2)R1+R2 is given by randomized-
time-division
• Immediate to evaluate the sum-rate for any binary

input broadcast channel

Geng

V. Wang

Jog
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Optimality/sub-optimality ofM(T1, T2) and/or O(T1, T2)

Known: M(T1, T2) is optimal if and only if

M(T1 ⊗ T1, T2 ⊗ T2) =M(T1, T2)⊕M(T1, T2) ∀(T1, T2).

Investigated product broadcast channels [Gen+14]

• Demonstrated a product broadcast channel where

C(T1 ⊗ T̂1, T2 ⊗ T̂2) =M(T1 ⊗ T̂1, T2 ⊗ T̂2)
)C(T1, T2)⊕ C(T̂1, T̂2) =M(T1, T2)⊕M(T̂1, T̂2)

• Developed sufficient conditions forM(T1, T2) to be optimal
� Key idea: Min-max interchange
� Establish capacity regions of new classes of product broadcast

channels
� Developed a new outer bound for product broadcast channels

• Demonstrated a product broadcast channel where

M(T1 ⊗ T̂1, T2 ⊗ T̂2) = C(T1 ⊗ T̂1, T2 ⊗ T̂2) ( O(T1 ⊗ T̂1, T2 ⊗ T̂2).

Hence, sub-optimality of O(T1 ⊗ T̂1, T2 ⊗ T̂2).

Geng

Gohari

Yu
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On optimality ofM(T1, T2)

Let T1(y1|x) and T2(y2|x) be given channels, α ∈ [0, 1], and λ ≥ 1. Define

F T1,T2λ,α (µX) := CµX
[
(λ− α)H(Y1)− αH(Y2) + max

p(u,v|x)
{λI(U ;Y1) + I(V ;Y2)− I(U ;V )}

]
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F T1,T2λ,α (µX) := CµX
[
(λ− α)H(Y1)− αH(Y2) + max

p(u,v|x)
{λI(U ;Y1) + I(V ;Y2)− I(U ;V )}

]
Results [AGN13; AGN19]
• To evaluate F T1,T2λ,α (µX) it suffices to consider (U, V ): |U|+ |V| ≤
|X |+ 1

� Employs the perturbation approach to obtain cardinality
bounds

� Feasible to get very good approximations by fine grid search
for small |X | (say, |X | ≤ 4)

• If the following sub-additivity (over product channels) holds:
F T1⊗T̂1,T2⊗T̂2λ,α (µX1,X̂1

) ≤ F T1,T2λ,α (µX1) + F T̂1,T̂2λ,α (µX̂1
)

thenM(T1, T2) is optimal.

• Numerical simulations have not yet yielded counterexamples

• Can prove the sub-additivity when α = 0 or α = 1.

Anantharam

Gohari

Therefore current evidence points to a potential optimality ofM(T1, T2).
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• Numerical simulations have not yet yielded counterexamples
� Request: Can others also try numerical experiments.

• Can prove the sub-additivity when α = 0 or α = 1.
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Chandra Nair Superposition Coding Region ISIT 2021 25 / 29



On optimality ofM(T1, T2)

Let T1(y1|x) and T2(y2|x) be given channels, α ∈ [0, 1], and λ ≥ 1. Define

F T1,T2λ,α (µX) := CµX
[
(λ− α)H(Y1)− αH(Y2) + max

p(u,v|x)
{λI(U ;Y1) + I(V ;Y2)− I(U ;V )}

]
Results [AGN13; AGN19]
• To evaluate F T1,T2λ,α (µX) it suffices to consider (U, V ): |U|+ |V| ≤
|X |+ 1

� Employs the perturbation approach to obtain cardinality
bounds

� Feasible to get very good approximations by fine grid search
for small |X | (say, |X | ≤ 4)

• If the following sub-additivity (over product channels) holds:
F T1⊗T̂1,T2⊗T̂2λ,α (µX1,X̂1

) ≤ F T1,T2λ,α (µX1) + F T̂1,T̂2λ,α (µX̂1
)

thenM(T1, T2) is optimal.

• Numerical simulations have not yet yielded counterexamples

• Can prove the sub-additivity when α = 0 or α = 1.

Anantharam

Gohari

Therefore current evidence points to a potential optimality ofM(T1, T2).

Chandra Nair Superposition Coding Region ISIT 2021 25 / 29



On optimality ofM(T1, T2)

Let T1(y1|x) and T2(y2|x) be given channels, α ∈ [0, 1], and λ ≥ 1. Define

F T1,T2λ,α (µX) := CµX
[
(λ− α)H(Y1)− αH(Y2) + max

p(u,v|x)
{λI(U ;Y1) + I(V ;Y2)− I(U ;V )}

]

A natural extension (projection of upward
closed decoding sets) of Martons region to
three receivers is shown to be strictly sub-
optimal. [PP18]
• Used algebraic structured codes

Structured codes traces origins in network
information theory to
• Modulo-two-sum problem [KM79]

Padakandla

Körner

Pradhan

Marton

Chandra Nair Superposition Coding Region ISIT 2021 25 / 29



On optimality ofM(T1, T2)

Let T1(y1|x) and T2(y2|x) be given channels, α ∈ [0, 1], and λ ≥ 1. Define

F T1,T2λ,α (µX) := CµX
[
(λ− α)H(Y1)− αH(Y2) + max

p(u,v|x)
{λI(U ;Y1) + I(V ;Y2)− I(U ;V )}

]

A natural extension (projection of upward
closed decoding sets) of Martons region to
three receivers is shown to be strictly sub-
optimal. [PP18]
• Used algebraic structured codes

Structured codes traces origins in network
information theory to
• Modulo-two-sum problem [KM79]

Padakandla

Körner

Pradhan

Marton

Chandra Nair Superposition Coding Region ISIT 2021 25 / 29



Advances over the classical results - Main part

Investigate optimality/sub-optimality of superposition coding region (2007-2018)

• More instances where it matches capacity region
� Evaluation of inner and outer bounds (ideas involved)

• Settings where it is sub-optimal

Investigate optimality/sub-optimality of Marton’s inner bound and UVW outer
bound (2008-2015)

• More instances where the bounds coincide
� Evaluation of inner and outer bounds (ideas involved)

• Settings where there is a gap between the bounds

Recent advances (2019 - ) and remarks
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Recent Advances

X
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Blackwell broadcast channel BEC(ε)

Erased Blackwell Broadcast Channel

• What is the capacity region of the above channel?

• Is it (1− ε)× C(Blackwell)?
� Outer bounds seem to suggest so (each mutual information

term of the form I(U ;Yi|V ) scales by (1− ε))

• On the other hand,M(Blackwell) has a term I(U ;V ) that does
not scale by (1− ε)

Gohari
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Blackwell broadcast channel BEC(ε)

Erased Blackwell Broadcast Channel

• The capacity region ( (1− ε)C(Blackwell) [GN20]
� Notion of "auxiliary receiver" to develop two new outer

bounds for broadcast channel (both strictly improve on
O(T1, T2))

� The capacity region is still open for this setting

� Even determining the corner-point of the form (1− ε, R∗2)
is open.

Gohari
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Concluding Remarks

The ideas involved in developing these results have proved useful in other settings as
well
• Sub-optimality of Han-Kobayashi achievable region for the Interference channel
� Ideas involved in evaluation of the regions (non-covex optimization problems)

• New outer bounds in Interference, Relay etc
� Auxiliary receiver approach

• (Re)-discovered connections to hypercontractivity

Working on these settings also gave rise to a meta-conjecture
• Global tensorization if and only if local tensorization for a family of functionals

(that frequently arise in multiuser settings) [Nai20]
• Some counterexamples were inspired by this meta-conjecture

Most of the progress have been achieved by considering the oxymoronic simple yet
hard instances.
• Listed a few open problems of the above flavor in this talk as well
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Thanks

Thanks
• My collaborators for this wonderful journey
• The organizers for the opportunity
• The virtual audience for sparing your valuable time
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An Observation

Note: Family of functionals that showed up in network information theory∑
S⊆[n]

αSH(XS), αS ∈ R.

Usually, one is interested in testing the sub-additivity of

CµX [αSH(XS)].

This is equivalent to testing a global tensorization property.

Definition
A functional

∑
S⊆[n] αSH(XS) is said to satisfy global tensorization if a product

distribution maximizes Gµ12(γ1, γ2) for all γ1, γ2, where

Gµ12(γ1, γ2) :=
∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))
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Definition
A functional

∑
S⊆[n] αSH(XS) is said to satisfy local tensorization if the product
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Observation (Conjecture)
For functionals in this family global tensorization holds if and only if local
tensorization holds

Note: Similarity to testing concavity using a local (second derivative) condition
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