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Introduction

This talk is about capacity regions in multiuser settings

Since capacity regions are usually convex subsets,
I will focus on optimal weighted sum-rates

If I am very specific:
this talk is about information functionals whose maximum value yields the optimal
weighted sum-rates
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Introduction

This talk is about capacity regions in multiuser settings

Since capacity regions are usually convex subsets,
I will focus on optimal weighted sum-rates

If I am very specific:
this talk is about information functionals whose maximum value yields the optimal
weighted sum-rates

To make it clear
For a point-to-point memoryless channel WY |X , we know that

C(W ) := max
pX

I(X;Y )

The talk is not about C(W ) but rather about

(W,pX) 7→ I(X;Y )
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Introduction

This talk is about capacity regions in multiuser settings

Since capacity regions are usually convex subsets,
I will focus on optimal weighted sum-rates

If I am very specific:
this talk is about information functionals whose maximum value yields the optimal
weighted sum-rates

To make it clear
For a broadcast channel with degraded message sets WY1,Y2|X , we know that, for
λ ≥ 1

max
(R0,R1)∈C(W )

R1 + λR0 = max
pV,X

min
α∈[0,1]

{(λ− α)I(V ;Y2) + (1− α)I(X;Y1|V ) + αI(X;Y1)}

= min
α∈[0,1]

max
pX

(λ− α)I(X;Y2) + αI(X;Y1)

+ CpX [(1− α)I(X;Y1)− (λ− α)I(X;Y2)]

In this talk we are interested in functionals like

(W,pX) 7→ CpX [(1− α)I(X;Y1)− (λ− α)I(X;Y2)]

Chandra Nair Introduction Workshop 2022 2 / 17



Introduction

This talk is about capacity regions in multiuser settings

Since capacity regions are usually convex subsets,
I will focus on optimal weighted sum-rates

If I am very specific:
this talk is about information functionals whose maximum value yields the optimal
weighted sum-rates

To make it clear
There is a class of interference channels WY1,Y2|X1,X2

, for which

max
(R0,R1)∈C(W )

R1 +R2 = max
pX1

pX2

I(X1;Y1) + I(X2;Y2)

However we are not interested in

(W,pX1pX2) 7→ I(X1;Y1) + I(X2;Y2)

I will show one of the functionals of interest here later
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Additivity and Sub-additivity

It is clear that capacity or weighted-sum-capacity, C(W ), satisfies

C(W ⊗W ) = 2C(W )

Given a distribution pX on the input (or inputs), once can also look at the capacity or
weighted-sum-capacity, C(W,pX), conditioned on codes having the distribution, pX .

It is also clear that capacity or weighted-sum-capacity, C(W,pX), satisfies

C(W ⊗W,pX1,X2) ≤ 2C(W,pX)

where pX = 1
2pX1 +

1
2pX2 .

Motivated by this observation, let

I = {(W,pX)}

be the collection of pairs of channels and input distributions (pX is consistent with
W ).
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It is clear that capacity or weighted-sum-capacity, C(W ), satisfies

C(W ⊗W ) = 2C(W )

Given a distribution pX on the input (or inputs), once can also look at the capacity or
weighted-sum-capacity, C(W,pX), conditioned on codes having the distribution, pX .

It is also clear that capacity or weighted-sum-capacity, C(W,pX), satisfies

C(W ⊗W,pX1,X2) ≤ 2C(W,pX)

where pX = 1
2pX1 +

1
2pX2 .

Motivated by this observation, let

I = {(W,pX)}

be the collection of pairs of channels and input distributions (pX is consistent with
W ).

A function F : I 7→ R is called sub-additive if

F (W1 ⊗W2, pX1,X2) ≤ F (W1, pX1) + F (W2, pX2)
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Additivity and Sub-additivity

It is clear that capacity or weighted-sum-capacity, C(W ), satisfies

C(W ⊗W ) = 2C(W )

Given a distribution pX on the input (or inputs), once can also look at the capacity or
weighted-sum-capacity, C(W,pX), conditioned on codes having the distribution, pX .

It is also clear that capacity or weighted-sum-capacity, C(W,pX), satisfies

C(W ⊗W,pX1,X2) ≤ 2C(W,pX)

where pX = 1
2pX1 +

1
2pX2 .

Motivated by this observation, let

I = {(W,pX)}

be the collection of pairs of channels and input distributions (pX is consistent with
W ).

A function F : I 7→ R is called concave sub-additive if it is sub-additive and
F (W,pX) is concave in pX for a fixed W .
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Sub-additivity and single-letterization

In many network information theory (channel coding) instances, we have multi-letter
characterizations of weighted-sum-capacity

• Broadcast channel WY1,Y2|X , the weighted sum-capacity λR1 +R2 for a
distribution pX , is given by

C(W,pX) = lim
n→∞

1

n
sup

pXn∈Mn

sup
pUpV

λI(U ;Y n
11) + I(V ;Y n

21)

• Interference channel WY1,Y2|X1,X2
, the weighted sum-capacity λR1 +R2 for a

distribution pX1pX2 , is given by

C(W,pX1pX2) = lim
n→∞

1

n
sup

pXn
11

pXn
21

∈Mn

λI(Xn
11;Y

n
11) + I(Xn

21;Y
n
21)

• Relay channel WY,Yr|X,Xr
, the capacity R for a distribution pX , is given by

C(W,pX) = lim
n→∞

1

n
sup

pXn∈Mn

I(Xn;Y n).
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Sub-additivity and single-letterization

In many network information theory (channel coding) instances, we have multi-letter
characterizations of weighted-sum-capacity

Let G(W⊗n, pXn) be a multi-letter characterization of a weighted-sum-capacity, i.e.

C(W,pX) = lim
n

1

n
sup

pXn∈Mn

G(W⊗n, pXn).

If one could find a concave sub-additive function F that dominates pointwise, i.e.

G(W⊗n, pXn) ≤ F (W⊗n, pXn) ∀ W,pXn

then note that

1

n
G(W⊗n, pXn) ≤ 1

n
F (W⊗n, pXn)

s.a.
≤ 1

n

n∑
i=1

F (W,pXi)
ccv
≤ F (W,pX).

Hence F (W,pX) will be a single-letter upper bound to the weighted sum capacity.
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Two directions

Direction 1: Design new concave sub-additive functionals that serve as outer bounds
to the capacity region (or weighted-sum-capacity)

• These have led to new outer bounds that have strictly improved on existing
bounds

• Solved some open problems and new results regarding capacity regions

Direction 2: Devise techniques to determine whether a given function F : I 7→ R is
concave sub-additive

• Main aim: to test optimality of existing inner bounds

• Solved some of these optimality questions

• Some intriguing observations (unpublished work)

Common: Understanding global and local optimizers of certain non-convex
functionals
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Direction 1: Starting points of single-letterization

Traditionally, one starts from expressions like
• I(M ;Y n) or I(Xn;Y n): for point-to-point channel
• αI(M0,M1;Y

n
11) + (1− α)I(M1;Y

n
11|M0) + (λ− 1)I(M0;Y

n
21): for broadcast

channel with degraded message sets

Rather recent: Genie-aided starting points (interference channel)
• λI(M1;Y

n
11, T

n
1 ) + I(M2;Y

n
21, T

n
2 )

Here Tn
1 and Tn

2 are the genie sequences.

Rather surprisingly, there are concave sub-additive F from this starting point (for
non-trivial Tn

1 and Tn
2 ) that turn out to be equal to capacity for some non-trivial

interference channels.

Very recent: Auxiliary receiver starting points (broadcast, interference, and relay
channel)
• I(M ; Jn) +

(
I(M ;Y n)− I(M ; Jn)

)
Here Jn is an auxiliary receiver sequence

Chandra Nair Introduction Workshop 2022 6 / 17



Direction 1: Starting points of single-letterization

Traditionally, one starts from expressions like
• I(M ;Y n) or I(Xn;Y n): for point-to-point channel
• αI(M0,M1;Y

n
11) + (1− α)I(M1;Y

n
11|M0) + (λ− 1)I(M0;Y

n
21): for broadcast

channel with degraded message sets

Rather recent: Genie-aided starting points (interference channel)
• λI(M1;Y

n
11, T

n
1 ) + I(M2;Y

n
21, T

n
2 )

Here Tn
1 and Tn

2 are the genie sequences.

Rather surprisingly, there are concave sub-additive F from this starting point (for
non-trivial Tn

1 and Tn
2 ) that turn out to be equal to capacity for some non-trivial

interference channels.

Very recent: Auxiliary receiver starting points (broadcast, interference, and relay
channel)
• I(M ; Jn) +

(
I(M ;Y n)− I(M ; Jn)

)
Here Jn is an auxiliary receiver sequence

Chandra Nair Introduction Workshop 2022 6 / 17



Direction 1: Starting points of single-letterization

Traditionally, one starts from expressions like
• I(M ;Y n) or I(Xn;Y n): for point-to-point channel
• αI(M0,M1;Y

n
11) + (1− α)I(M1;Y

n
11|M0) + (λ− 1)I(M0;Y

n
21): for broadcast

channel with degraded message sets

Rather recent: Genie-aided starting points (interference channel)
• λI(M1;Y

n
11, T

n
1 ) + I(M2;Y

n
21, T

n
2 )

Here Tn
1 and Tn

2 are the genie sequences.

Rather surprisingly, there are concave sub-additive F from this starting point (for
non-trivial Tn

1 and Tn
2 ) that turn out to be equal to capacity for some non-trivial

interference channels.

Very recent: Auxiliary receiver starting points (broadcast, interference, and relay
channel)
• I(M ; Jn) +

(
I(M ;Y n)− I(M ; Jn)

)
Here Jn is an auxiliary receiver sequence

Chandra Nair Introduction Workshop 2022 6 / 17



The main tools that we have

Chain-rule

H(Y n|U) =

n∑
i=1

H(Yi|U, Y i−1) =

n∑
i=1

H(Yi|Ui)

where Ui = (U, Y i−1) (Gallager ’74)

Cśiszar-Körner-Marton identity

H(Y n|U)−H(Jn|U) =

n∑
i=1

(
H(Yi|U, Y i−1, Jn

i+1)−H(Ji|U, Y i−1, Jn
i+1)

)
=

n∑
i=1

(
H(Yi|Ui)−H(Ji|Ui)

)
where Ui = (U, Y i−1, Jn

i+1) (Körner-Marton ’77)
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Chain-rule

H(Y n|U) =

n∑
i=1

H(Yi|U, Y i−1) =

n∑
i=1

H(Yi|Ui)

where Ui = (U, Y i−1) (Gallager ’74)

Cśiszar-Körner-Marton identity

H(Y n|U)−H(Jn|U) =

n∑
i=1

(
H(Yi|U, Y i−1, Jn

i+1)−H(Ji|U, Y i−1, Jn
i+1)

)
=

n∑
i=1

(
H(Yi|Ui)−H(Ji|Ui)

)
where Ui = (U, Y i−1, Jn

i+1) (Körner-Marton ’77)

Potential sub-optimality
• Data-processing inequality (and drop some terms)
• Identify auxiliaries in terms of distributions induced by good codes, but then take

union over all possible distributions
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On Traditional and Genie-based Outer bounds

Traditional outer bounds such as
• Korner-Marton or UVW outer bound for broadcast channel

• Cutset bound for the relay channel
have been well studied and now even automated
(talk (Wed) by Cheuk Ting Li)

Chandra Nair Devising concave sub-additive functionals Workshop 2022 8 / 17



On Traditional and Genie-based Outer bounds

Genie-based outer bounds were popularized by the Gaussian interference channel
Here is a family of outer bound functionals for sum-rate of an interference channel
using the genie approach

I(X1;T1, Y1|S2) + λI(X2;T2, Y2|S1)

+ CpX1
pX2

[I(X1;T1|X2, T2, S1)− λI(X1;Y2|X2, T2, S1)]

− I(X1;T1|X2, T2, S1) + λI(X1;Y2|X2, T2, S1)

+ CpX1
pX2

[I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)]

− I(X2;T2|X1, T1, S2) + I(X2;Y1|X1, T1, S2)

Here

p(y1, t1, s1, y2, t2, s2|x1, x2) = p(t1, s1|x1)p(t2, s2|x2)p(y1, y2|t1, t2, s1, s2, x1, x2).

Further we require that
• p(y1|x1, x2) = w(y1|x1, x2) and p(y2|x1, x2) = w(y2|x1, x2).
• for each i = 1, 2, Ti, Si has degraded order, i.e. either Xi → Ti → Si or
Xi → Si → Ti holds.
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On Traditional and Genie-based Outer bounds

Genie-based outer bounds were popularized by the Gaussian interference channel
Here is a family of outer bound functionals for sum-rate of an interference channel
using the genie approach

I(X1;T1, Y1|S2) + λI(X2;T2, Y2|S1)

+ CpX1
pX2

[I(X1;T1|X2, T2, S1)− λI(X1;Y2|X2, T2, S1)]

− I(X1;T1|X2, T2, S1) + λI(X1;Y2|X2, T2, S1)

+ CpX1
pX2

[I(X2;T2|X1, T1, S2)− I(X2;Y1|X1, T1, S2)]

− I(X2;T2|X1, T1, S2) + I(X2;Y1|X1, T1, S2)

Why is this interesting?
• Only known way to obtain sum-capacity of a certain class of

discrete memoryless interference channels (by choosing a suitable
genie)

• Recovers many of the known capacity results in the Gaussian
interference channel

Sida Liu
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Auxiliary receiver based outer bounds [GN22]

Disclaimer: The functionals are less exciting than some of their im-
plications
Gaussian Z-Interference channel

Illustration for a = 0.8, P1 = P2 = 1.

Amin Gohari
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Auxiliary receiver based outer bounds [GN22]

Disclaimer: The functionals are less exciting than some of their im-
plications
Gaussian Z-Interference channel

Theorem

Let C2 =
1
2 log(1 + P2) and R∗

1 = 1
2 log

(
1 + a2P1

1+P2

)
. Then

max
(R1,R2)∈ROB

λR2 +R1 = λC2 +R∗
1

when

λ ≥ 1 +


(1+P2)(1−a2)

a2P2

(
1+
√

1+4a2(1−a2)P2

)2

4a2(1−a2)P2
a2 < 1

2

(1+P2)(1−a2)
a2P2

(1+
√
1+P2)

2

P2
a2 ≥ 1

2

.

Remark: This kind of behavior at the Costa-Polyanskiy-Wu corner
point does not follow from Talagrand’s HWI inequality.

Amin Gohari
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Auxiliary receiver based outer bounds [GN22]

Deterministic Broadcast channel
Korner-Marton Outer bound yields the capacity region

R1 ≤ H(Y1),

R2 ≤ H(Y2),

R1 +R2 ≤ H(Y1, Y2).

Erased Deterministic Broadcast channel (pass each output through a
BEC(ϵ)): Korner-Marton Outer bound (or UVW outer bound) yields

R1 ≤ (1− ϵ)H(Y1),

R2 ≤ (1− ϵ)H(Y2),

R1 +R2 ≤ (1− ϵ)H(Y1, Y2).

Auxiliary Receiver based outer bounds show that capacity region can
be strictly inside this region
• Erased Blackwell broadcast channel (strict inclusion)

Amin Gohari
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Auxiliary receiver based outer bounds [GN22]

Relay Channel (also including results from an about to be published
paper)
Just by setting J = Yr, we obtain an outer bound that
• Strictly improves on cutset outer bound for the scalar Gaussian

relay channel for all non-zero channel gains

• Solves Kim’s conjecture (for deterministic relay channels)

• Solves Cover’s open problem for a large class of channels (com-
plement lies in a smaller dimensional space)

• Recovers the outer bound in the Gaussian case obtained using
spherical rearrangement (Wu et. al.)

• Strictly improves on the outer bound for the BSC case (Wu et.
al., Barnes e. al.)

We also show that this bound can be improved by using other auxiliary
receivers

Amin Gohari

El Gamal
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• Recovers the outer bound in the Gaussian case obtained using
spherical rearrangement (Wu et. al.)

• Strictly improves on the outer bound for the BSC case (Wu et.
al., Barnes e. al.)

We also show that this bound can be improved by using other auxiliary
receivers

Amin Gohari

El Gamal
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Auxiliary receiver based outer bounds [GN22]

The main concerns of the auxiliary receiver approach
• Every choice of auxiliary receivers yields an outer bound

• One can incorporate many auxiliary receivers into a single bound

• But how do we know which auxiliary receivers lead to strict im-
provements

One of the main contributions
• Show that there exists auxiliary receivers that lead to strict im-

provements

But this is something that needs lot more investigation

Amin Gohari
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Direction 2: Testing for sub-additivity

This is motivated by inner bounds whose multi-letter expressions tend to capacity

Finding counterexamples to the optimality of certain achievable re-
gions were motivated by the ideas (which I am going to present)

• Han-Kobayashi region for the interference channel
• Superposition coding for a three receiver broadcast channel with

degraded message sets
Lingxiao

Babak

However in some other settings we could not find counterexamples

For instance: Marton’s inner bound for the two-receiver broadcast channel

A functional F (W,pX) of interest here (Marton’s region) is

CpX

[
−(λ− α)H(Y1)− αH(Y2) + max

pUV |X

{
λI(U ;Y1) + I(V ;Y2)− I(U ;V )

}]
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An Observation

We wish to test the sub-additivity of F (W,pX) of the form

CpX

[
sup
pU|X

{∑
S

αSH(YS)

}]
, for αs ∈ R.

By Fenchel duality

CpX

[
max
pU|X

{∑
S

αSH(YS)

}]
= inf

γ(X)

{
F̂ (γ)(W ) + EpX (γ(X))

}
where

F̂ (γ)(W ) = sup
qU,X

{∑
S

αSHq(YS)− EqX (γ(X))

}

Lemma
The sub-additivity of F (W,pX) is equivalent to requiring that for every γ1(X1) and
γ2(X2) a product distribution qU1,X1qU2,X2 maximizes∑

S

αSHqX1X2
(Y1S , Y2S)− EqX1

(γ1(X1))− EqX2
(γ2(X2))
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Global and Local tensorization

Definition
A functional

∑
S αSH(YS) is said to satisfy global tensorization if a product

distribution maximizes F̂ (γ1,γ2)(W1 ⊗W2, pUX1X2) for all γ1(X1), γ2(X2), where

F̂ (γ1,γ2)(W1 ⊗W2, pUX1X2) :=
∑
S

αSH(Y1S , Y2S)− E(γ1(X1))− E(γ2(X2))

Definition
A functional

∑
S αSH(YS) is said to satisfy local tensorization if the product of

local maximizers of F̂ (γ1)
1 (W1, pUX1) and F̂

(γ2)
2 (W2, pUX2) is a local maximizer

of F̂ (γ1,γ2)
12 (W1 ⊗W2, pUX1X2) for all γ1(X1), γ2(X2), where

F̂
(γ1)
1 (W1, pUX1) :=

∑
S

αSH(Y1S)− E(γ1(X1))

F̂
(γ2)
2 (W2, pUX2) :=

∑
S

αSH(X2S)− E(γ2(X2))

F̂
(γ1,γ2)
12 (W1 ⊗W2, pUX1X2) :=

∑
S

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))
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Observations

For all the functionals for which we can prove global tensorization:

we can mechanically convert our proofs to prove local tensorization
• First derivative conditions are rather immediate
• Second derivative conditions:

H(Ys) 7→ E(Var(f(X)|YS))

⋄ For independent distributions, we can see that the key entropic equalities
(and inequalities) have a correspondence with conditional variance equalities
(and inequalities)

For all the functionals for which we know that local tensorization fails

we can show that global tensorization also fails

This was how we
• guessed that Han–Kobayashi region and others may be sub-optimal
• identified counterexamples
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A working hypothesis

Conjecture (broadly speaking)
Local tensorization implies Global tensorization

Can show local tensorization for the functional (in Marton’s inner bound) when one of
the channels W1 or W2 has binary inputs
• Proof utilizes the knowledge of local maximizers in binary alphabet case
• If the conjecture is true, then we can show that Marton’s inner bound matches

the capacity region for binary input broadcast channels
• Whether local tensorization holds when both are non-binary is open

⋄ We do not have a good understanding of the local maximizers in the
non-binary case

More importantly, it provides a new way to test if a functional is sub-additive or
equivalently a product distribution qX1qX2 maximizes∑

S

αSHqX1X2
(Y1S , Y2S)− EqX1

(γ1(X1))− EqX2
(γ2(X2))
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Recap

Consider functionals of the form

F̂ (W,γ)(pUX) :=
∑
S

αSH(YS)− E(γ(X))

The quantities that we are interested in
• Local and global maximizers of F̂ (W,γ)(pUX)

• Local and global maximizers of F̂ (W1⊗W2,γ1(X1)+γ2(X2))(pUX1X2)

Recap
Note that
• F (W,pX) := CpX [

∑
S αSH(YS)] being (concave) sub-additive is directly related

to single-letter outer bounds or capacity regions
• Testing sub-additivity is equivalent to requiring that

F̂ (W1⊗W2,γ1(X1)+γ2(X2))(pUX1X2) has a product global maximizer

⋄ However, these are usually non-convex functions of pUX

• From empirical observations it appears that a certain local property (product of
local maximizers is a local maximizer) would imply the global maximizer property
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On Local Maximizers

The conjecture that local tensorization implies global tensorization is true if

• For every W (or within a class that we are interested in, that is closed under ⊗)
and γ,

F̂ (W,γ)(pU,X) =
∑
S

αSH(YS)− E(γ(X))

has a unique local maximizer (hence global maximizer)
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• For every W (or within a class that we are interested in, that is closed under ⊗)
and γ,

F̂ (W,γ)(pU,X) =
∑
S

αSH(YS)− E(γ(X))

has a unique local maximizer (hence global maximizer)
⋄ This is trivially true when all αS are non-negative, since the function is

concave in pX
⋄ Surprisingly, there are other non-trivial instances where this is true
⋄ In particular, when Gaussian optimality follows using rotation,

sub-additivity arguments (for instance, MIMO Broadcast), you
"automatically" get a proof of uniqueness of local maximizers in the space of
Gaussian input distributions
("observation" made just four months ago)

⋄ For instance, say λ > 1, the following function of p.s.d matrices, in the
domain 0 ⪯ K ⪯ K0, where Σ1,Σ2 ≻ 0:

log |K +Σ1| − λ log |K +Σ2|

has a unique local maximizer. The arguments are completely
information-theoretic!
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On Local Maximizers

The conjecture that local tensorization implies global tensorization is true if

• For every W (or within a class that we are interested in, that is closed under ⊗)
and γ,

F̂ (W,γ)(pU,X) =
∑
S

αSH(YS)− E(γ(X))

has a unique local maximizer (hence global maximizer)

• However there are non-trivial discrete memoryless broadcast channels, for which

pX 7→ H(Y1)− λH(Y2)− E(γ(X))

has multiple local maximizers, for λ > 1

⋄ This is an instance for which we know that both local and global
tensorizations hold

• Relaxed Guess: For every W1 ⊗W2, γ1, γ2, all local maximizers of∑
S

αSH(Y1S , Y2S)− E(γ(X1) + γ(X2))

are product distributions
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Remarks

For local-maximizers with full support we can show that they have to be product
form for some functionals

• This is an interesting calculation
• But we cannot deal with "boundary" points yet

• Difference between additive Gaussian noise settings and discrete settings
• Perhaps we should view these functionals in a larger space (for instance using

auxiliary receivers)

Acknowledgements
These ideas and intuition (and their refinements) is really based on many years of
collective discussions with
Venkat Anantharam, Amin Gohari, Dustin Wang, Ken Lau, and others
As with any scientific method, the conjectures may need further refinement based on
more empirical data

Thank You
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