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Non-convex problems and network information theory

• Introduction

? Building blocks

? How to test the optimality of coding schemes

? Where do the optimization problems arise?

• Two problems to illustrate some ideas

• Observations and potential future directions
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Point-to-point communication

M Encoder
Xn

W⊗n
Y n

Decoder M̂

A rate R is achievable if there exists a sequence of encoding/decoding maps so that
P(M 6= M̂)→ 0 as n→∞. Capacity, C(W ) := sup{R : R is achievable }.

Shannon

Random coding can be used to achieve

R(W ) = sup
µ(x)

I(X;Y )

where I(X;Y ) :=
∑
x,y

µX,Y (x, y) log

(
µX,Y (x, y)

µX(x)µY (y)

)
I(X;Y ): mutual information between X and Y

Question: Is R(W ) = C(W )? (YES) (Shannon '48)
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Testing optimality

It is easy (why?) to see that R(W ) is optimal if and only if

R(W ⊗W ) = 2R(W ) ∀ W.

The above equality (additivity) follows if the following sub-additivity holds:

I(X1, X2;Y1, Y2) ≤ I(X1;Y1) + I(X2;Y2).

I(X1, X2;Y1, Y2) = I(X1, X2;Y1) + I(X1, X2;Y2|Y1)
= I(X1, X2;Y1) + I(Y1, X1, X2;Y2)− I(Y1;Y2)

= I(X1;Y1) + I(X2;Y2)− I(Y1;Y2)

≤ I(X1;Y1) + I(X2;Y2).

Note: Computing R(W ) = supp(x) I(X;Y ) is relatively easy, since I(X;Y ) is a
concave function of p(x).
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If ∃W such that 1
2R(W ⊗W ) > R(W ) then

C(W ) ≥ 1
2R(W ⊗W ) > R(W )

(Hence equality is necessary)
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Given ε > 0 there is a sequence of codes such that

1

n
I(Xn;Y n) ≥ C(W )− ε, ∀n > n0

• Fano's inequality

• Data processing inequality
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Given ε > 0 there is a sequence of codes such that

1

n
I(Xn;Y n) ≥ C(W )− ε, ∀n > n0

Hence, for k such that N = 2k > n0 we have

R(W )
indc
=

1

N
R(W ⊗ · · · ⊗W︸ ︷︷ ︸

N

) =
1

N
I(XN ;Y N ) ≥ C(W )− ε.
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Sub-additivity

A functional de�ned over a probability simplex is said to be
sub-additive if

F12(µX1,X2) ≤ F1(µX1) + F2(µX2) ∀ µX1,X2 .

In above, since W is �xed, I(X;Y ) is a functional over µX , the space of
input distributions.
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Successes

The various ideas introduced by Shannon have led to an information revolution

Random coding and its optimality have directly inspired

• Low density parity check codes (LDPC)

• Polar codes

? proof of sub-additivity

We are now (fully immersed) in a wireless world

• Network of users sharing same medium

• Clear need to maximally utilize the limited resources (power, bandwidth, energy)

• Develop a similar understanding in network settings

? But we �rst need to fully understand the basic building blocks
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1. Multiple Access Channel (uplink) (Shannon '61)

M1

M2

Encoder 1

Encoder 2
Xn

2

Xn
1

W (y|x1, x2)
Y n

Decoder (M̂1, M̂2)

rfwireless-world

Ahlswede

Random coding can be used to achieve rate pairs
(R1, R2) that satisfy

R1 ≤ I(X1;Y |X2, Q)

R2 ≤ I(X2;Y |X1, Q)

R1 +R2 ≤ I(X1, X2;Y |Q)

for some p(q)p(x1|q)p(x2|q); it su�ces to consider
|Q| ≤ 2. Call this region R(W ).

Question: Is this the capacity (optimal) region? (YES) (Ahlswede '72)
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Testing optimality

De�ne, for λ ≥ 1,

Sλ(W ) = max
(R1,R2)∈R(W )

{
λR1 +R2}

= max
p1(x1)p2(x2)

{
(λ− 1)I(X1;Y |X2) + I(X1, X2;Y )

}

The above equality (additivity) follows if the following sub-additivity holds:

(λ− 1)I(X11, X12;Y1, Y2|X21, X22) + I(X11, X12, X21, X22;Y1, Y2)

≤ (λ− 1)I(X11;Y1|X21) + I(X11, X21;Y1)

+ (λ− 1)I(X12;Y2|X22) + I(X12, X22;Y2)
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2. Broadcast channel (downlink) (Cover '72)

(M0,M1,M2) Encoder
Xn

Wa(y1|x)

Wb(y2|x)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

rfwireless-world

Marton

Superposition coding and random hashing can be used to

achieve rate triples (R0, R1, R2) that satisfy

R0 ≤ min{I(Q;Y1), I(Q;Y2)}
R0 +R1 ≤ I(U,Q;Y1)

R0 +R2 ≤ I(V,Q;Y2)

R0 +R1 +R2 ≤ min{I(Q;Y1), I(Q;Y2)}+ I(U ;Y1|Q)

+ I(V ;Y2|Q)− I(U ;V |Q)

for some p(q, u, v, x). Call this region R(Wa,Wb).

Question: Is this the capacity (optimal) region? (Open) (since Marton '79)
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Testing optimality (R0 = 0)

De�ne, for λ ≥ 1,

Sλ(W ) = max
(R1,R2)∈R(Wa,Wb)

{λR1 +R2}

= max
p(u,v,w,x)

{
(λ− 1)I(U,Q;Y1) + min{I(Q;Y1), I(Q;Y2)}+ I(U ;Y1|Q)

+ I(V ;Y2|Q)− I(U ;V |Q)
}

= min
α∈[0,1]

max
p(u,v,w,x)

{
(λ− α)I(Q;Y1) + αI(Q;Y2) + λI(U ;Y1|Q)

+ I(V ;Y2|Q)− I(U ;V |Q)
}

As before, R(Wa,Wb) is optimal if and only if

Sλ(Wa ⊗Wa,Wb ⊗Wb) = 2Sλ(Wa,Wb) ∀ Wa,Wb, λ ≥ 1.

Note: Computing Sλ(Wa,Wb) is a non-convex optimization problem.
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Successes

In spite of the underlying problem being intrinsically non-convex

• R(Wa,Wb) is optimal on R1 = 0 (or R2 = 0)

? Degraded message sets: Korner and Marton ('77)

• R(Wa,Wb) is optimal for some classes of channels

? Gallager '74, Korner and Marton ('75, '77, '79), Gelfand and Pinsker ('78),
Poltyrev ('78), El Gamal ('79, '80)

? Weingarten and Steinberg and Shamai '06, Nair '10, Geng and Gohari and
Nair and Yu '14, Geng and Nair '14

• Novel ideas and techniques were needed to establish these capacity regions

? Cover '72: development of superposition coding strategy
? Gallager '74: converse to the degraded broadcast channel ( sub-additivity )
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3. Interference Channel (Ahlswede '74)

Credit:www.personal.psu.edu/bxg215/research.html

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

Wb(y2|x1, x2)

Wa(y1|x1, x2)
Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2
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3. Interference Channel (Ahlswede '74)

Han

Kobayashi

Superposition coding, message splitting, coded time-sharing

can be used to achieve rate pairs (R1, R2) that satisfy

R1 < I(X1;Y1|U2, Q),

R2 < I(X2;Y2|U1, Q),

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q),

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q),

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q),

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q),

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1| ≤ |X1|+ 4,
|U2| ≤ |X2|+ 4, and |Q| ≤ 7. Call this region R(Wa,Wb).

Question: Is this the capacity region?
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|U2| ≤ |X2|+ 4, and |Q| ≤ 7. Call this region R(Wa,Wb).

Question: Is this the capacity region?

Had been open (since Han and Kobayashi '81)
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Successes

In spite of the underlying problem being intrinsically non-convex

• R(Wa,Wb) is optimal for some classes of channels

? Carleial '75, Sato '81, El Gamal and Costa ('81 and '86)

• R(Wa,Wb) is close to optimal for Gaussian Interference channel

? Etkin and Tse and Wang ('09)

• Novel ideas and mathematical results came out from the investigation of
optimality

? Concavity of entropy power (Costa '85)
? Genie based approach to prove sub-additivity (El Gamal and Costa '81,
Kramer '02)

• R(Wa,Wb) is not optimal in general (Nair, Xia, Yazdanpanah '15)

Broadcast and interference channels are far too important

• To let non-convexity dissuade us

• To not investigate simple classes that require new ideas
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A class of open problems

A sub-collection of the 15 open problems listed in Chaps. 5-9.

5.1 What is the capacity region of less noisy

broadcast-channels with four or more receivers?

(two-receiver: Korner-Marton '76, three-receiver: Nair-Wang '10)

5.2 What is the capacity region of more capable

broadcast-channels with three or more receivers?

(two-receiver: El Gamal '79)

6.1 What is the capacity region of the Gaussian Interference

channel with weak interference?

(strong-interference: Sato '79; mixed-interference corner-points:
Sato' 81, Costa'85; weak-interference corner-points: rate-sum
(partial): three-groups '09 )

6.4 Is the Han-Kobayashi inner bound tight in general for interference channels?

8.2 Is superposition coding optimal for the general 3-receiver broadcast channel with

one message to all three receivers and another message to two receivers?

8.3 What is the sum-capacity of the binary skew-symmetric broadcast channel?

8.4 Is the Marton inner bound tight in general for broadcast channels?

9.2 Can the converse for the Gaussian broadcast channel be proved directly by

optimizing the Nair-El Gamal outer bound?

9.3 What is the capacity region of the 2-receiver Gaussian broadcast channel with

common message?
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A class of open problems

My reformulations of a few of them.

5.1 Is superposition coding optimal for less-noisy broadcast

channels with four or more receivers?

5.2 Is superposition coding optimal for more-capable

broadcast channels with three or more receivers?

6.1 Is the Han�Kobayashi scheme with Gaussian signaling

tight for the Gaussian Interference channel with weak

interference?

6.4 Is the Han-Kobayashi inner bound tight in general for interference channels?

8.2 Is superposition coding optimal for the general 3-receiver broadcast channel with

one message to all three receivers and another message to two receivers?

8.3 Does the Marton inner bound achieve the sum-capacity of the binary skew-symmetric

broadcast channel?

8.4 Is the Marton inner bound tight in general for broadcast channels?

9.2 Can the converse for the Gaussian broadcast channel be proved directly by
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9.3 Does the Marton inner bound achieve the capacity region of the 2-receiver Gaussian

broadcast channel with common message?
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The common theme to these (reformulated) questions

Common theme

Is a candidate rate region optimal?

Idea for testing optimality:

• Sλ(W ⊗W )
?
= 2Sλ(W )

• Determine sub-additivity of an associated non-convex functional

14



Status of the open problems

5.1 Is superposition coding optimal for less-noisy broadcast

channels with four or more receivers?(OPEN)

5.2 Is superposition coding optimal for more-capable

broadcast channels with three or more receivers?

(NO: Nair-Xia '12)

6.1 Is the Han�Kobayashi scheme with Gaussian signaling

tight for the Gaussian Interference channel with weak

interference?(OPEN) (YES: corner points using ideas in
measure transportation by Polyanskiy-Wu '15)

6.4 Is the Han-Kobayashi inner bound tight in general for interference channels?

(NO: Nair-Xia-Yazdanpanah '15)

8.2 Is superposition coding optimal for the general 3-receiver broadcast channel with

one message to all three receivers and another message to two receivers?

(NO: Nair-Yazdanpanah '17)

8.3 Does the Marton inner bound achieve the sum-capacity of the binary skew-symmetric

broadcast channel?(OPEN)

8.4 Is the Marton inner bound tight in general for broadcast channels?(OPEN)

9.2 Can the converse for the Gaussian broadcast channel be proved directly by

optimizing the Nair-El Gamal outer bound?(YES: Geng-Nair '14)

9.3 Does the Marton inner bound achieve the capacity region of the 2-receiver Gaussian

broadcast channel with common message?(YES: Geng-Nair '14)
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Outline

• Broadcast channel: Establishing optimality of Marton's region for MIMO
broadcast channel

• Interference channel: Sub-optimality of the Han�Kobayashi region

• Family of non-convex optimization problems

? Relation to problems of interest in other �elds
? Unifying observations and some conjectures

16



MIMO (Vector) Gaussian broadcast channel

(M0,M1,M2) Encoder
Xn

Wa(y1|x)

Wb(y2|x)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

MIMO Gaussian broadcast channel:

Y1 = AX + Z

Y2 = BX + Z

where Z ∼ N (0, I) denotes the additive noise.

Very important channel class in wireless communication

Models: multi-antenna transmitter/receivers (downlink)

17



MIMO (Vector) Gaussian broadcast channel

(M0,M1,M2) Encoder
Xn

Wa(y1|x)

Wb(y2|x)

Y n
1

Y n
2

Decoder 1

Decoder 2

M̂0, M̂1

M̃0, M̃2

MIMO Gaussian broadcast channel:

Y1 = AX + Z

Y2 = BX + Z

where Z ∼ N (0, I) denotes the additive noise.

Very important channel class in wireless communication

Models: multi-antenna transmitter/receivers (downlink)

17



History

Optimality of Marton's bound, R(Wa,Wb), was established:

• Scalar case (Bergmans '73) (Entropy Power Inequality)

• Reversely degraded setting (Poltyrev '78, El Gamal '81)

• Optimality on R0 = 0 (Weingarten and Steinberg and Shamai '06)

? Builds on ideas in Poltyrev
? Tour de force in optimization

? Gist : Showing optimality of Gaussian random variables for a non-convex
optimization problem

? Remark: Ideas do not extend to show optimality when there is common
message, i.e. R0 6= 0

• Optimality in general (Geng and Nair '14)

? Gist : Develop a technique for proving optimality of Gaussian random
variables (from sub-additivity)

Explain our technique on R0 = 0 (for simplicity)
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Outer bound (Korner-Marton '79)

The set of rate pairs (R1, R2) satisfying

R2 ≤ I(U ;Y2)

R1 +R2 ≤ I(U ;Y2) + I(X;Y1|U)

for some p(u, x), where E(‖X‖2) ≤ P forms an outer bound to the capacity region.

Denote this region as O(Wa,Wb).

For λ > 1, let

Sλ(Wa,Wb) := max
(R1,R2)∈O

R1 + λR2

= max
p(u,x)

λI(U ;Y2) + I(X;Y1|U)

= max
p(x)

{
λI(X;Z) + CµX [I(X;Y )− λI(X;Z)]

}
(Nair '13)

x

upper concave envelope: Cx[f ]

Not easy to compute (in general)
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One can show that if Gaussians maximize

CµX [h(Y1)− λh(Y2)]

then Marton's inner bound is optimal (on R0 = 0)

Here h(X) is the di�erential entropy:

h(X) := −
∫
f(x) log f(x)dx,

where f(x) is the density function of X.

A similar (more-involved) problem shows up when R0 6= 0

An identical technique (to the one I am going to demonstrate) establishes that also

20



Gaussian optimality via sub-additivity (Geng-Nair '14)

Maximize, for λ > 1, the value of the functional

CµX [h(AX + Z)− λh(BX + Z)]

over X : E(XXT ) � K, where A,B are invertible matrices and Z ∼ N (0, I).

We will see that the maximum value is

h(AX∗ + Z)− λh(BX∗ + Z),

where X∗ ∼ N (0,K ′) for some K ′ � K.

Lemma: CµX [h(AX + Z)− λh(BX + Z)] is sub-additive.

Proof: For any µX1,X2

h(AX1 + Z1, AX2 + Z2|U)− λh(BX1 + Z1, BX2 + Z2|U)

= h(AX1 + Z1|U,AX2 + Z2)− λh(BX1 + Z1|U,AX2 + Z2)

+ h(AX2 + Z2|U,BX1 + Z1)− λh(BX2 + Z2|U,BX1 + Z1)

−(λ− 1)I(AX2 + Z2;BX1 + Z1|U)
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We will see that the maximum value is
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where X∗ ∼ N (0,K ′) for some K ′ � K.
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Proof: For any µX1,X2
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Gaussian optimality: ctd..

Let (U†, X†) be a maximizer, i.e.

V = max
µX
CµX [h(AX + Z)− λh(BX + Z)] = h(AX† + Z|U†)− λh(BX† + Z|U†).

Let (Xa, Ua) and (Xb, Ub) be i.i.d. according to (U†, X†).

Note: Thus, conditioned on (Ua, Ub):

• Xa ⊥ Xb (from construction)

• (Xa +Xb) ⊥ (Xa −Xb) (from proof of sub-additivity)

• Implies that conditioned on (Ua, Ub): Xa, Xb are Gaussian

? Characterization of Gaussians (Bernstein '40s)
? Proof: Using characteristic functions (Fourier transforms)

This technique has been subsequently used by others in various other instances.

Note: There are some similarities with work of Lieb and Barthe (90s)

They also use rotations (but not information measures and its algebra)
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An open question

We have seen (yesterday and today) how sub-additivity implies Gaussian optimality

Open question

For α, a ∈ (0, 1), do Gaussians maximize the functional

αh(X2 + aX1 + Z) + (1− α)h(X1 + Z)− h(aX1 + Z)

over X1 ⊥ X2, subject to E(X2
1 ) ≤ P1, E(X2

2 ) ≤ P2. Here Z ∼ N (0, 1) is independent
of X1, X2.

A�rmative if the following functional sub-additive?

CµX1

[
αh(X2 + aX1 + Z) + (1− α)h(X1 + Z)− h(aX1 + Z)

]

Why should someone care?

• If true, solves the capacity region for the Gaussian Z-interference channel

• Related to reverse EPIs, hyperplane conjecture, etc.
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Outline

• Broadcast channel: Establishing optimality of Marton's for MIMO broadcast
channel

• Interference channel: Sub-optimality of the Han�Kobayashi region

• Family of non-convex optimization problems

? Relation to problems of interest in other �elds
? Unifying observations and some conjectures
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Interference Channel (Ahlswede '74)

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

Wb(y2|x1, x2)

Wa(y1|x1, x2)
Y n
1

Y n
2

Decoder 1

Decoder 2

M̂1

M̂2
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Han-Kobayashi achievable region (1981) á la Chong et. al.

A rate-pair (R1, R2) is achievable for the interference channel if

R1 < I(X1;Y1|U2, Q),

R2 < I(X2;Y2|U1, Q),

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q),

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q),

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q),

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q),

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q)

for some pmf p(q)p(u1, x1|q)p(u2, x2|q), where |U1| ≤ |X1|+ 4, |U2| ≤ |X2|+ 4, and
|Q| ≤ 7. Denote the (closure of) region as R(Wa,Wb).

Numerically infeasible to compute R(WaWb) even for generic binary-input
binary-output interference channels

First step:

• Find a channel class where HK region simpli�es AND yet not too trivial
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Clean Z Interference Channel (CZIC) Model

M1

M2

Encoder 1

Encoder 2

Xn
1

Xn
2

Wa(y1|x1, x2)
Y n
1

Y n
2 = Xn

2

Decoder 1

Decoder 2

M̂1

M̂2

Clean Z-interference channel

Lemma: A rate-pair (R1, R2) belongs to Han-Kobayashi region if and only if

R1 < I(X1;Y1|U2, Q),

R2 < H(X2|Q),

R1 +R2 < I(X1, U2;Y1|Q) +H(X2|U2, Q),

for some pmf p(q)p(x1|q)p(u2, x2|q), where |U2| ≤ |X2| and |Q| ≤ 2.

Denote region: R(Wa)
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Testing optimality

Equivalent to test if

Sλ(Wa ⊗Wa) = 2Sλ(Wa), ∀ Wa, λ ≥ 0,

where
Sλ(Wa) := max

(R1,R2)∈R(Wa)
λR1 +R2.

For λ ∈ [0, 1], Sλ(Wa) is given by

max
p1(x1)p2(u2,x2)

{
(1− λ)H(X2) + λI(X1, U2;Y1) + λH(X2|U2)

}
= max

p1(x1)p2(x2)

{
H(X2) + λI(X1;Y1)

}

Lemma (sub-additivity) (Nair-Xia-Yazdanpanah '15):

H(X21, X22) + λI(X11, X12;Y11, Y12)

≤
{
H(X21) + λI(X11;Y11)

}
+
{
H(X22) + λI(X12;Y12)

}
− (1− λ)I(X21;X22).

Implies optimality of Sλ(Wa), λ ∈ [0, 1].
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What about λ > 1?

For λ ≥ 1, Sλ(Wa) is given by

max
p1(x1)p2(u2,x2)

{
I(X1, U2;Y1) +H(X2|U2) + (λ− 1)I(X1;Y1|U2)

}
= max
p1(x1)p2(x2)

{
I(X1, X2;Y1) + CX2 [(λ− 1)I(X1;Y1) +H(X2)− I(X2;Y1|X1)]

}

Question: Can we numerically test if Sλ(Wa ⊗Wa) = 2Sλ(Wa) ?

X2 is a binary random variable (i.e. concave envelope over single variable)
(λ− 1)I(X1;Y1) +H(X2)− I(X2;Y1|X1): has at most 2 in�exion points
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What about λ > 1?

P (X2)

H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)

C
P2(X2)

[H(X2) + (λ− 1)H(Y1)− λH(Y1|X1)]

The shape of concave envelope for a generic binary CZIC
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Sub-optimality of the Han-Kobayashi region

λ W (Y1 = 0|X1, X2) A HK
λ (W ) 1

2A
TIN
λ (W⊗2)

2

[
1 0.5
1 0

]
1.107516 1.108141

9

[
0.12 0.89
0.21 0.62

]
1.074484 1.075544

12

[
0.01 0.58
0.20 0.74

]
1.289830 1.293760

14

[
0.78 0.07
0.46 0.05

]
1.426526 1.432419

15

[
0.91 0.22
0.66 0.15

]
1.323766 1.339065

16

[
0.91 0.13
0.62 0.06

]
1.515421 1.534724

18

[
0.38 0.87
0.12 0.79

]
1.449959 1.468577

Counterexamples to the optimality of Han-Kobayashi region.

Note: For the �rst example, we can calculate the concave envelope analytically.
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Particular Channel

X2 = 0 X2 = 1

X1

0

1

Y1

0

1

X1

0

1

Y1

0

1

1
2

1
2

• We compute max
HK

λR1 +R2 for λ = 2

max
p1(x1)p2(x2)

(
H(Y1) + C

p2(x2)

[
H(X2) + 2H(Y1)−H(Y1|X1)

])

• Let p and q respectively denote Pr(X1 = 0) and Pr(X2 = 0)

f(p, q) = (1− 2p̄)hb(q) + hb(q +
p

2
q̄)− 2phb(

q + 1

2
)

where hb(.) is the binary entropy function
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Particular channel continued

f(p, q) is concave in q for p ≥ 1
2 and for 0 ≤ p < 1

2

C
q
[f(p, q)] =

 f(p, q) q > 1− 2p
f(p, 1− 2p)− f(p, 0)

1− 2p
q + f(p, 0) q ∈ [0, 1− 2p]
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Particular channel continued
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q
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C
q
[f(0.2, q)]
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Particular channel continued

f(p, q) is concave in q for p ≥ 1
2 and for 0 ≤ p < 1

2

C
q
[f(p, q)] =

 f(p, q) q > 1− 2p
f(p, 1− 2p)− f(p, 0)

1− 2p
q + f(p, 0) q ∈ [0, 1− 2p]

Corollary

Maximum of 2R1 +R2 for the Han�Kobayashi region is equal to the maximum of
T (p, q) for (p, q) ∈ [0, 1]× [0, 1], where

T (p, q) =

 hb(q + p
2 q̄) + f(p, q) q ≥ min{0, 1− 2p}

hb(q + p
2 q̄) +

f(p, 1− 2p)− f(p, 0)

1− 2p
q + f(p, 0) o.w.,

where f(p, q) = (1− 2p̄)hb(q) + hb(q + p
2 q̄)− 2phb(

q+1
2 )
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Plot of T (p, q)

Numerical search indicates: maxp,q T (p, q) = 1.107516.. at p = 0.5078.. and
q = 0.4365..
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Particular channel continued

• Interval arithmetic is a method to obtain formal bounds for functions consisting
of basic arithmetic functions and commonly used functions such as logarithms
and trigonometric functions.

• T (p, q) only includes basic arithmetic functions and logarithm.

• We used Julia based implementation of this formal method to obtain

maxT (p, q) ∈ [1.10751, 1.10769]

• The 2-letter TIN achieves 2R1 +R2 = 1.108141 at the distribution

P ((X11, X12) = (0, 0)) = p P ((X11, X12) = (1, 1)) = 1− p

P ((X21, X22) = (0, 0)) = 0.36q P ((X21, X22) = (1, 1)) = 1− 1.64q

P ((X21, X22) = (0, 1)) = 0.64q P ((X21, X22) = (1, 0)) = 0.64q

where p = 0.507829413, q = 0.436538150

• Repetition coding across time seems to outperform memoryless coding
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What about Marton's region for the broadcast channel?

Is the following functional sub-additive or is there an example where it is
super-additive?

Let Wa(y|x) and Wb(z|x) be given channels, α ∈ [0, 1], and λ ≥ 1.

CµX
[
(λ− α)H(Y )− αH(Z) + max

p(u,v|x)
{λI(U ;Y ) + I(V ;Z)− I(U ;V )}

]

• If sub-additive, then Marton's region is optimal for broadcast channel

• If ∃ example where it is super-additive, then one should be able to deduce a
channel where Marton's region is not optimal

Remarks:

• Conjectured to be sub-additive (Anantharam-Gohari-Nair '13)

• To evaluate the concave envelope

? Su�ces to consider (U, V ): |U |+ |V | ≤ |X|+ 1.
? We did not get any contradiction to sub-addivity for binary input broadcast
channels

• Can prove sub-additivity when α = 0 or α = 1.
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Remarks

• Idea: To demonstrate super-additivity

• Di�culty: Identify a su�ciently simple class where

? Evaluation of the region is possible : non-convex optimization

? Super-additivity holds

This idea was also used to resolve

8.2 Is superposition coding optimal for the general 3-receiver DM-BC with one
message to all three receivers and another message to two receivers?
NO (Nair,Yazdanpanah '17)
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Outline

• Broadcast channel: Establishing optimality of Marton's for MIMO broadcast
channel

• Interference channel: Sub-optimality of the Han�Kobayashi region

• Family of non-convex optimization problems

? Relation to problems of interest in other �elds
? Unifying observations and some conjectures
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A speci�c family of non-convex optimization problems

Shows up: Testing the optimality of coding schemes

Testing optimality (usually) reduces to testing sub-additivity of

CνX
[ ∑
S⊆[n]

αSH(XS)
]
, αS ∈ R.

Using Fenchel duality this is same as

G1(γ1) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ1(X))

G2(γ2) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ2(X))

G12(γ1, γ2) := max
µX1,X2

∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))
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CνX
[ ∑
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αSH(XS)
]
, αS ∈ R.
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∑
S⊆[n]

αSH(XS)− E(γ1(X))

G2(γ2) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ2(X))

G12(γ1, γ2) := max
µX1,X2

∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

Is G12(γ1, γ2) = G1(γ1) +G2(γ2) ∀ γ1, γ2 ?
i.e. Is the maximizer of G12 a product distribution?

38



A speci�c family of non-convex optimization problems

Shows up: Testing the optimality of coding schemes

Testing optimality (usually) reduces to testing sub-additivity of

CνX
[ ∑
S⊆[n]

αSH(XS)
]
, αS ∈ R.

Using Fenchel duality this is same as

G1(γ1) := max
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αSH(XS)− E(γ1(X))

G2(γ2) := max
µX

∑
S⊆[n]

αSH(XS)− E(γ2(X))

G12(γ1, γ2) := max
µX1,X2

∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

Are there other �elds where the same family shows up?
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Hypercontractivity

Studied in functional analysis, cs theory, etc.

De�nition

(X,Y ) ∼ µXY is (p, q)-hypercontractive for 1 ≤ q ≤ p if

‖Tg‖p ≤ ‖g‖q ∀g(Y )

where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

This (serendipitous) rediscovery of the link between hypercontractivity and
information measures and these equivalent characterizations is spurring a lot of work
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Here ‖Z‖p = E(|Z|p)
1
p .

There is a lot of interest in evaluting hypercontractivity parameters for distributions.

Theorem (Nair '14)

(X,Y ) ∼ µXY is (p, q)-hypercontractive for 1 ≤ q ≤ p if and only if

CνX,Y

[
H(X,Y )− (1− 1

p
)H(X)− 1

q
H(Y )

]∣∣∣
µX,Y

= H(X,Y )− (1− 1

p
)H(X)− 1

q
H(Y )
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where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

Hypercontractivity parameters satis�es a property called tensorization :

If (X1, Y1) ⊥ (X2, Y2) are both (p, q)-hypercontractive, then ((X1, X2), (Y1, Y2)) is also
(p, q)-hypercontractive

Gets around the curse of dimensionality.

This (serendipitous) rediscovery of the link between hypercontractivity and
information measures and these equivalent characterizations is spurring a lot of work
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‖Tg‖p ≤ ‖g‖q ∀g(Y )

where T is the Markov operator characterized by µY |X

Here ‖Z‖p = E(|Z|p)
1
p .

Rather immediate that sub-additivity, i.e.

CµX1Y1X2Y2
[H(X1Y1X2Y2)− λ1H(X1X2)− λ2H(Y1Y2)]

≤ CµX1Y1
[H(X1Y1)− λ1H(X1)− λ2H(Y1)] + CµX2Y2

[H(X2Y2)− λ1H(X2)− λ2H(Y2)]

is equivalent to tensorization of hypercontractivity parameters

This (serendipitous) rediscovery of the link between hypercontractivity and
information measures and these equivalent characterizations is spurring a lot of work
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Consequences

Computation of hypercontractivity parameters is considered hard

• X is uniform and µY |X is binary symmetric channel

? (Bonami-Beckner inequality '70s, Borrell '82)

• (X,Y ) Jointly Gaussian (Gross '75)

Evaluation of achievable regions is of similar di�culty as determining
hypercontractivity (same family and similar terms)

For testing optimality of schemes we had to develop tools for evaluating achievable
regions for certain channels

Can we use our techniques to evaluate new hypercontractivity parameters?

Yes, we can.

E.g.: X is uniform and µY |X is binary erasure channel (Nair-Wang '16,'17)

Other techniques we used to solve these non-convex problems:

• Identify a lower dimensional manifold that contains all the stationary points

• Analyze the function directly on this manifold or

• Use properties of the points on this manifold to deduce sub-additivity
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Recap

Test the optimality of coding schemes in network information theory

• Resolved some open questions

• Many remain open

Computed the optimizers of several non-convex functionals

• Developed some new tools and techniques

? Gaussian optimality via sub-additivity
? Optimal auxiliaries correspond to computation of concave envelopes
? Min-max theorem

• More ideas and tools seem necessary

These (speci�c family) non-convex functionals also appear in other �elds

• The tools (already) developed can be used to get some new results
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Outline

• Broadcast channel: Establishing optimality of Marton's for MIMO broadcast
channel

• Interference channel: Sub-optimality of the Han�Kobayashi region

• Family of non-convex optimization problems

? Relation to problems of interest in other �elds
? Unifying observations and some conjectures
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An Observation

Reminder: Family of functionals that showed up in network information theory∑
S⊆[n]

αSH(XS), αS ∈ R.

Usually, one is interested in testing the sub-additivity of

CµX [αSH(XS)].

This is equivalent to testing a global tensorization property.

De�nition

A functional
∑

S⊆[n] αSH(XS) is said to satisfy global tensorization if a product

distribution maximizes Gµ12(γ1, γ2) for all γ1, γ2, where

Gµ12(γ1, γ2) :=
∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

43



An Observation

De�nition

A functional
∑

S⊆[n] αSH(XS) is said to satisfy local tensorization if the product

of local maximizers of Gµ1(γ1) and G
µ2(γ2) is a local maximizer of Gµ12(γ1, γ2)

for all γ1, γ2, where

Gµ1 (γ1) :=
∑
S⊆[n]

αSH(X1S)− E(γ1(X1))

Gµ2 (γ2) :=
∑
S⊆[n]

αSH(X2S)− E(γ2(X2))

Gµ12(γ1, γ2) :=
∑
S⊆[n]

αSH(X1S , X2S)− E(γ1(X1))− E(γ2(X2))

Observation (Conjecture)

For functionals in this family global tensorization holds if and only if local
tensorization holds

Note: Similarity to testing concavity using a local (second derivative) condition
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Notes

For some of the remaining open problems (mentioned earlier), we can establish
local-tensorization

• Marton's inner bound for binary input broadcast channels

• Gaussian Z-interference channel

Therefore, if the Conjecture is true, then we would establish the capacity region for
these settings

Question: How may these two phenomena be connected?

A possible answer is (again) suggested by our computations in various examples
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Conjecture 2

Conjecture 2

Consider
fα(γ) = max

µX

∑
S⊆[n]

αSH(XS)− E(γ(X)), αS ∈ R.

Suppose α
(0)
S and α

(1)
S have interior global maximizers.

Let α
(t)
S = (1− t)α(0)

S + tα
(1)
S , t ∈ [0, 1]. Then there exists a continuous path in the

simplex such that µ(t) is a global maximizer of fα(t)(γ) for all t ∈ [0, 1].

Consequences:

• Information theory: Conjecture 2 (plus mild regularity conditions) implies the
Conjecture that local tensorization implies global tensorization

• Algorithms: Suppose one wants to approximate hypercontractivity parameters

? Start with p→∞
? Approximate the maximizing distribution at this boundary value of norm.
? Decrease p and track the global maximizers by local search.
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Optimization based approaches

Optimization based approaches have been game changers

First jump: Linear programming to convex optimization

Semi-de�nite program based algorithm design and analysis

• Compressive sensing

• Phase recovery

• Clustering

• Image processing

New Jump: Convex optimization to speci�c families of non-convex optimization

Studies on these families are already making impact in

• Machine learning and AI (Singular Value Decomposition)

• Graphical models and Statistical Physics based approaches (sum of energy and
entropy terms)

• Communication networks (linear combination of entropies of subsets)
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