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Abstract

We study Marton’s inner bound for a general two-receiver discrete memoryless broadcast channel. We conjecture a structural
result on the optimizers of Marton’s inner bound, which, if true, would greatly simplify the evaluation of the bound and provide
new insights into the underlying optimization problem. We derive an equivalent characterization for the sum-rate that demonstrates
a similar decoupling as one suggested by the conjecture.

I. INTRODUCTION

The communication system depicted in Figure 1 illustrates a two-receiver broadcast channel [2], wherein the sender aims
to transmit a private message to each receiver reliably.1 A detailed definition of a broadcast channel can be found in [4]. A
computable characterization of the capacity region of a general two-receiver broadcast channel remains unknown. To date, the
best achievable rate region is Marton’s inner bound [15].

Theorem 1. (Marton ’79) The union of non-negative rate pairs (R1, R2) satisfying the constraints

R1 < I(U,W ;Y ),

R2 < I(V,W ;Z),

R1 +R2 < min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ),

for any triples of random variables (U, V,W ) such that (U, V,W ) → X → (Y,Z) is achievable.

Given a broadcast channel T with transition probability T (y, z|x), we denote the Marton’s achievable region by RM . In [9],
RM is shown to be invariant if restricted to |W| ≤ |X |+4, and conditioned on any W = w, the sizes of U and V are restricted
to satisfy |U|+ |V| ≤ |X |+ 1. Furthermore, we can assume X is a function of U and V . In this paper, we restrict ourselves to
the dense class of broadcast channels where TY |X(y|x) > 0 and TZ|X(z|x) > 0. For such classes, it is known [11, Theorem 1]
that p(u, v) > 0 for all u, v. Further properties of the distributions corresponding to the boundary points of RM can be found in
[1], [7]–[11].

For any λ ≥ 1, we define the weighted sum rate of Marton’s inner bound as:

Γλ
M (T ) = max

(R1,R2)∈RM

R1 + λR2,

= max
p(u,v,w,x)

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + (λ− 1)I(V,W ;Z).

The weighted sum rate is known to have a simpler characterization without the auxiliary random variable W , which is derived
via convex duality in [1]. For an arbitrary sequence {ax ∈ R|X | : x ∈ X}, we define the dual characterization:

F (T, {ax}) = max
p(u,v,x)

[
− αH(Y )− (λ− α)H(Z) + I(U ;Y ) + λI(V ;Z)− I(U ;V ) +

∑
x

p(x)ax

]
,

where the maximum is taken over all p(u, v, x) defined on U × V × X . Then,

Γλ
M (T ) = min

α∈[0,1]
max
p(x)

{
αH(Y ) + (λ− α)H(Z) + min

ax

[
F (T, {ax})−

∑
x

p(x)ax

]}
. (1)

We provide a proof of the above equation in Appendix A for completeness.
Given any two broadcast channels T1 and T2, with transition probabilities T1(y1, z1|x1) and T2(y2, z2|x2) respectively, we

further define the dual characterization of Marton’s inner bound for the product channel T1 ⊗ T2:

F (T1 ⊗ T2, {ax1 + bx2}) = max
p(u,v,x1,x2)

[
− αH(Y1, Y2)− (λ− α)H(Z1, Z2) + I(U ;Y1, Y2) + λI(V ;Z1, Z2)− I(U ;V )

+
∑
x1,x2

p(x1, x2)(ax1 + bx2)
]
.

Conjecture 1. (Additivity Conjecture) [1] The dual characterization of Marton’s inner bound is additive, i.e., for any {ax1}, {bx2}
we have

F (T1 ⊗ T2, {ax1 + bx2}) =F (T1, {ax1}) + F (T2, {bx2}).

1For simplicity, we focus on the setting with private messages only. Extension to the setting with a common message is possible.
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Fig. 1. Two-receiver broadcast communication system.

Conjecture 1 leads to Marton’s inner bound being the capacity region, because the weighted sum rate is then sub-additive:

Γλ
M (T1 ⊗ T2) = min

α∈[0,1]
max

p(x1,x2)

{
αH(Y1, Y2) + (λ− α)H(Z1, Z2) + min

ax1 ,bx2

[
F (T1 ⊗ T2, {ax1 + bx2})−

∑
x

p(x)(ax1 + bx2)

]}
≤ min

α∈[0,1]
max
p(x1)

{
αH(Y1) + (λ− α)H(Z1) + min

ax1

[
F (T1, {ax1})−

∑
x

p(x)ax1

]}
+ min

α∈[0,1]
max
p(x2)

{
αH(Y2) + (λ− α)H(Z2) + min

bx2

[
F (T2, {bx2})−

∑
x

p(x)bx2

]}
=Γλ

M (T1) + Γλ
M (T2).

As established in [17], Conjecture 1 is equivalent to the following: let p∗(u1, v1, w1, x1) be a maximizer of F (T1, {ax1
})

and p†(u2, v2, w2, x2) be a maximizer of F (T2, {bx2
}), then p∗(u1, v1, w1, x1) ⊗ p†(u2, v2, w2, x2), with U = (U1, U2) and

V = (V1, V2), is a maximizer of F (T1 ⊗ T2, {ax1
+ bx2

}).

II. A CONJECTURE AND ITS IMPLICATIONS

Conjecture 2. (The Markovity Conjecture) When evaluating the extremal points of Marton’s achievable region, it is sufficient to
consider the random variable tuples (U, V,W,X) such that the Markov chain U → (W,X) → V holds. Equivalently, for every
arbitrary {ax}, to compute F (T, {ax}), it is sufficient to consider the random variable tuples (U, V,X) such that the Markov
chain U → X → V holds.

If Conjecture 2 holds, the calculation of Marton’s inner bound will be greatly simplified, providing insights into why it may
potentially be the capacity region, as we discuss in the next subsection. The evidence for the Markovity Conjecture arises from
numerical simulations. We have identified and verified maximizers of F (T, {ax}) across various channels with different input
alphabet sizes, confirming that the Markov chain U → X → V holds. Specifically, we examined over 10,000 channels for each
input alphabet size of |X | = 3, 4, 5, and more than 100 channels with |X | = 6, 7. The conjecture is also consistent with previous
results on optimal mappings for Marton maximizers:

• Binary Input Channels: Randomized time-division strategy is optimal. Hence, the maximizers, conditioning on each W = w,
have either U be constant or V be constant [16]. Thus, I(U ;V |W = w,X) = 0 holds trivially in this case.

• Semi-deterministic Channels: The maximizers satisfy either V = f(X) or U = g(Y ) so I(U ;V |X) = 0 follows.
• Erasure Blackwell Channel: To evaluate R1 + λR2 for the k-letter Marton, it is optimal to set U = Ŷ k, provided that λ is

greater than certain threshold [12]. Here, Ŷ is the first layer deterministic channel output and therefore H(U |Xk) = 0.
• Degraded/Less-noisy/More-capable Channels: The superposition coding region is the capacity region, which can be deduced

from Marton’s region by either setting U be constant or V be constant.

Remark 1. We have also verified, with limited numerical simulations, that the conjecture holds for the vector Gaussian broadcast
channel. Despite knowing that Marton’s bound matches the capacity region [6], [18], the Markovity conjecture seems to yield
more information than what is known regarding the true maximizers. However, as was shown in [13], the associated non-convex
problem has a unique local maximizer, thus enabling reliable simulation evidence.

A. Implications of the Markovity conjecture
One immediate consequence of the conjecture (if true) is that a decoupling of the optimization problem occurs in evaluating

the weighted sum rate of Marton’s inner bound. Note that,

F (T, {ax}) = max
p(u,v,x)

[
− αH(Y )− (λ− α)H(Z) + I(U ;Y ) + λI(V ;Z)− I(U ;V ) +

∑
x

p(x)ax

]
=max

p(x)

[
− αH(Y )− (λ− α)H(Z) + max

p(u,v|x)

{
I(U ;Y ) + λI(V ;Z)− I(U ;V )

}
+
∑
x

p(x)ax

]
.

Let p∗(u, v|x) be a maximizer such that X is a function of (U, V ) and U → X → V (existence of such a maximizer is
postulated by the conjecture) forms a Markov chain. Fix any x ∈ X , and define

Sx := {u : p∗(u|x) > 0, u ∈ U},
Tx := {v : p∗(v|x) > 0, v ∈ V}.

Then, we have the following consequence of the Conjecture 2.

Proposition 1.

p∗(x|u, v) = 1, ∀u, v ∈ Sx × Tx.



Proof. Note that p∗(u|x) > 0 and p∗(v|x) > 0. Because of the Markov chain p∗(u, v|x) = p∗(u|x)p∗(v|x), we obtain that
p∗(u, v|x) > 0. As p∗(u, v) > 0 for every (u, v) (for channels where T (y|x) and T (z|x) > 0), we have p∗(x|u, v) =
p∗(u,v|x)p(x)

p∗(u,v) > 0. On the other hand, as X is determined by U, V , we must have p∗(x|u, v) = 1.

Proposition 1 implies the following: Consider a |U| × |V| matrix where the matrix entries are determined by the mapping of
(u, v) to x ∈ X , i.e., in the (u, v) cell of the matrix, we put the symbol x that (u, v) is mapped into. Then, for a maximizer
p∗(u, v, x) satisfying the Markovity conjecture, the matrix locations marked as x, for any fixed x ∈ X , will form a “rectangle”,
i.e. of the form Sx × Tx. We call such a mapping to be a rectangular mapping. Thus, Conjecture 2, implies the existence of a
maximizer with a rectangular mapping. It turns out that the following converse statement is also true.

Lemma 1. Suppose there is a maximizer of F (T, {ax}) with a rectangular mapping, then for this maximizer U → X → V is
Markov.

Proof. Let us fix px and a rectangular mapping (i.e. fix the mapping (U, V ) 7→ X). Let M denote the class of distributions
p(u, v|x) consistent with the given mapping. Consider the maximization problem (we ignore the terms in F (T, {ax}) that depends
only on p(x))

max
p(u,v|x)∈M

{
I(U ;Y ) + λI(V ;Z)− I(U ;V )

}
= max

p(u,v|x)∈M

{
I(U ;Y ) + λI(V ;Z)− I(U ;X)− I(V ;X) + I(U, V ;X)− I(U ;V |X)

}
≤ max

p(u,v|x)∈M

{
I(U ;Y ) + λI(V ;Z)− I(U ;X)− I(V ;X) + I(U, V ;X)

}
= max

p(u|x):supp (p(u|x))∈Sx

{I(U ;Y )− I(U ;X)}+ max
p(v|x):supp (p(v|x))∈Tx

{λI(V ;Z)− I(V ;X)}+H(X).

Observe that the inequality becomes an equality precisely when U → X → V is Markov.

Remark 2. Therefore, an alternate way to state the Markovity conjecture is to state that there is a maximizer with a rectangular
mapping.

B. Rectangular mappings and their implications about the additivity of F (T, {ax})
Observe that the function I(U ;Y )− I(U ;X) is concave in p(u|x). This concavity implies the following: let us take Marton’s

inner bound for a product channel T (y1, z1|x1)T (y2, z2|x2). Assuming the conjecture holds, let p1(x1)p1(u1|x1)p1(v1|x1)
and p2(x2)p2(u2|x2)p2(v2|x2) be optimizers of F (T1, {ax1

}) and F (T2, {ax2
}) respectively. Consider a joint distribution

p1(x1)p2(x2) and a rectangular mapping induced by the tensor-product of the rectangular mappings of the individual components.
Due to concavity, it is easy to see that the product distribution p1(u1|x1)p2(u2|x2) is the maximizer of I(U ;Y1, Y2)−I(U ;X1, X2)
in the space of pU |X1,X2

. Despite the lack of concavity in p(v|x) for λI(V ;Z)−I(V ;X), one can show that p1(v1|x1)p2(v2|x2)
will be a local maximizer of λI(V ;Z1, Z2)− I(V ;X1, X2) in the space of pV |X1,X2

. This implies a partial “local-tensorization”
property in the sense of [17].

Results demonstrating that certain non-rectangular mappings cannot be maxmizers are already established in the literature.
References [8] and [11] indicate that, for any arbitrary input alphabet size |X |, the general AND mapping and the general XOR
mapping cannot appear as part of an optimal mapping. Consider any two-by-two rectangle consisting of the entries (u1, v1),
(u2, v1), (u1, v2), and (u2, v2). Let {A,B,C} be three distinct input alphabets. It has been shown that it suffices to consider

p(u, v, x) that do not contain the mapping
[
A B
B A

]
to obtain maximizers for F (T, {ax}) as any such rectangular sub-matrix.

This is called the XOR mapping. To complete the proof of the Markovity conjecture, we just need to show that the following

mapping,
[
A B
C A

]
, also does not appear in any two-by-two rectangle.2

A partial theoretical evidence is known, when |X | = 3, we do not need to consider the
[
A B
A A

]
mapping (called the generalized

AND). Both the generalized XOR and the generalized AND were proven using local optimality conditions. This prompted us to

look for a proof that
[
A B
C A

]
also does not appear in any two-by-two rectangle, using local optimality conditions. However, we

failed to do this; and in particular, we have identified an instance where such a mapping is a local maximizer but not a global
maximizer.

In the next section, we will outline the general local optimality conditions that we considered in our analysis, and we will
present the specific example (non-rectangular mapping) that passed our local optimality criterion.

III. EXISTENCE OF LOCAL MAXIMIZERS

Let us return to the main additivity conjecture (Conjecture 1). In this section, we show that the optimization problem defining
F (T, {ax}), i.e., maximum over p(u, v, x) of

G(p(u, v, x)) =− αH(Y )− (λ− α)H(Z) + I(U ;Y ) + λI(V ;Z)− I(U ;V ) +
∑
x

p(x)ax. (2)

has local maximizers (in the sense described below) that are not global maximizers.
Remark 3. This shows the difficulty in working with discrete memoryless channels. In the Gaussian setting, as [13] shows,
despite the problem being non-convex, there are no non-trivial local maximizers. This enables the feasibility of local arguments

2Note that once we have it, the 2 × 2 subpattern
[
A A
B A

]
can be also discarded by considering a perturbation which adds a new input symbol C to the

input, and sets pϵ
Y Z|C where limϵ→0 pϵY Z|C = pY Z|A.



to show the additivity. However, as the following example shows, one cannot directly work with F (T, {ax}) if one wants to
avoid spurious local maximizers.

We say that p(u, v, x) is a local maximizer if the following three types of perturbations do not increase G(p(u, v, x)):
• Perturbations that keep the alphabet size of U and V unchanged: pϵ(u, v, x) = (1 − ϵ)p(u, v, x) + ϵs(u, v, x) for some

distribution s(u, v, x).
• Perturbations that increase the alphabet size of U by one:

pϵ(u, v, x) =

{
p(u, v, x)− ϵs(u, v, x), u ∈ [1 : U|],
ϵq(v, x), u = |U|+ 1.

(3)

for some arbitrary distributions q(v, x) and s(u, v, x).
• Similarly, perturbations that increase the alphabet size of V by one.
First, consider perturbations of the form pϵ(u, v, x) = (1 − ϵ)p(u, v, x) + ϵs(u, v, x): the first derivative conditions are as

follows: for every (u, v, x) we have ∑
y,z

T (y, z|x) log p(u, y)p(v, z)λeax

p(y)ᾱp(z)αp(u, v)p(v)λ−1
≤ F (T, {ax}). (4)

Moreover, equality holds in (4) if x = f(u, v).
The second derivative conditions are as follows: consider a multiplicative perturbation pϵ(u, v, x) = p(u, v, x)(1+ ϵL(u, v, x))

for some function L(u, v, x) satisfying E[L] = 0. The first derivative under this class of perturbations is zero; hence, the second
derivative of the expression G(pϵ(u, v, x)) should be non-positive at ϵ = 0. From here, we obtain

− ᾱE[E[L|Y ]2]− αE[E[L|Z]2]− E[E[L|U, V ]2]− (λ− 1)E[E[L|V ]2] + E[E[L|U, Y ]2] + λE[E[L|V,Z]2] ≤ 0. (5)

Next, consider the perturbation in (3), which increases the cardinality of U by 1. The first-order condition of this perturbation
implies that ∑

v,x,y,z

q(v, x)T (y, z|x) log q(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1q(v)
+
∑
x

q(x)ax ≤ F (T, {ax}), ∀q(v, x). (6)

The original first derivative conditions in (4) do not imply these inequalities. Thus, they supplement the original first derivative
conditions. Note that the expression in (6) is convex in q(x|v), which implies, to maximize the left-hand-side, it suffices to
consider q(v, x) for which q(x|v) ∈ {0, 1}. Finally, observe that from the equality condition of equation (4), equality in (6) holds
if q(v, x) = p(v, x|u) for some u. Thus,∑

v,x,y,z

q(v, x)T (y, z|x) log q(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1q(v)
+ max

q(v,x)

∑
x

q(x)ax = F (T, {ax}). (7)

A similar inequality can be obtained by expanding the alphabet of V as follows:∑
u,x,y,z

q(u, x)T (y, z|x) log p(u, y)q(z)λ

p(y)ᾱp(z)αq(u)
+ max

q(u,x)

∑
x

q(x)ax ≤ F (T, {ax}), (8)

with equality if q(u, x) = p(u, x|v) for some v.

A. Alternative characterization of the conditions in (7) and (8)
Consider (7). Let us fix q(x|v) and consider the optimization in terms of q(v). Observe that for any r(y) we have∑

v,x,y,z

q(v, x)T (y, z|x) log q(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1q(v)
≥
∑

v,x,y,z

q(v, x)T (y, z|x) log r(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1q(v)
.

This implies that for any r(y) we have∑
v,x,y,z

q(v, x)T (y, z|x) log r(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1q(v)
+
∑
x

q(x)ax ≤ F (T, {ax}).

Given a fixed q(x|v), the optimal q(v) that maximizes the left hand side can be found. The first derivative conditions imply∑
x,y,z

q(x|v)T (y, z|x) log eaxr(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1
+ log

1

q(v)
= K, ∀v,

for some constant K. Thus, we find that q(v) is given

q(v) = e−K
∏
x,y,z

(
eaxr(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1

)q(x|v)T (y,z|x)

,

for some constant K ≤ F (T, {ax}). Since there is a choice of r(y) and q(x|v) that attains K = F (T, {ax}), we can write

max
r(y),q(x|v)

log

(∑
v

∏
x,y,z

(
eaxr(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1

)q(x|v)T (y,z|x))
= max

r(y),q(x|v)
log
∑
v

eKq(v) = F (T, {ax}).

Equivalently,

max
r(y)

log

(∑
v

max
x

∏
y,z

(
eaxr(y)p(v, z)λ

p(y)ᾱp(z)αp(v)λ−1

)T (y,z|x))
= F (T, {ax}), (9)



and equality holds if r(y) = p(y|u) for some u.
Similarly, (8) reduces to

max
r(z)

log

(∑
u

max
x

∏
y,z

(
eaxr(z)λp(u, y)

p(y)ᾱp(z)α

)T (y,z|x))
= F (T, {ax}), (10)

and equality holds if r(z) = p(z|v) for some v.

B. A local maximizer
We hereby report a local maximizer of

G(p(u, v, x)) = −αH(Y )− (λ− α)H(Z) + I(U ;Y ) + λI(V ;Z)− I(U ;V ) +
∑
x

p(x)ax (11)

that satisfies (4), (7) and (8), but is not a global maximizer. Let X = Y = Z = {A,B,C}, and

{ax} = [0,−0.36832504,−0.13005504], α = 0.53699858, λ = 1.

In this example, the channel transition matrices TY |X and TZ|X are:

T (y|x) Y = A Y = B Y = C
X = A 0.35332099 0.34718682 0.29949219
X = B 0.76824470 0.12006556 0.11168974
X = C 0.13810833 0.48234150 0.37955017

T (z|x) Z = A Z = B Z = C
X = A 0.44260251 0.21452819 0.34286930
X = B 0.40932411 0.00992684 0.58074905
X = C 0.27754304 0.56201647 0.16044049

We report the following p∗(u, v, x) is a local maximizer of (11), such that p∗(x|u, v) is of the
[
A B
C A

]
pattern,

f(U, V ) V = 0 V = 1
U = 0 A B
U = 1 C A

while the marginal p∗(u, v) is:

p∗(u, v) V = 0 V = 1
U = 0 0.01524814 0.22806511
U = 1 0.09087526 0.66581149

The corresponding value of the local maximum is −1.06956384. However, if we fix p(u, v) and change the
[
A B
C A

]
mapping to

rectangular patterns such as
[
A B
C B

]
,
[
B B
C A

]
or

[
C B
C B

]
, the expression in (11) would increase to −1.06730708, −1.06895326,

and −1.06228037, respectively.

IV. ALTERNATE CHARACTERIZATION FOR SUM-RATE OF MARTON’S INNER BOUND

The section derives an alternative characterization of

F (T, {ax}) = max
p(u,v,x)

[
− αH(Y )− (1− α)H(Z) + I(U ;Y ) + I(V ;Z)− I(U ;V ) +

∑
x

p(x)ax
]
.

The idea is similar to the one used in the Blahut-Armioto proof, and similar expressions have been obtained in [3], [14].

Theorem 2. We have

F (T, {ax}) = max
p(u,v,x)

log

(∑
u,v

max
x

[
eax

∏
y

(p(u|y)p(y)α)p(y|x)
∏
z

(p(v|z)p(z)ᾱ)p(z|x)
])

(12)

= max
q(u,y),r(v,z)

log

(∑
u,v

max
x

[
eax

∏
y

(q(u|y)q(y)α)p(y|x)
∏
z

(r(v|z)r(z)ᾱ)p(z|x)
])

. (13)

where the maximum is over all arbitrary joint distributions q(u, y) and r(v, z).

Proof. We first show that

F (T, {ax}) ≤ max
q(u,y),r(v,z)

log

(∑
u,v

max
x

[
eax

∏
y

(q(u|y)q(y)α)p(y|x)
∏
z

(r(v|z)r(z)ᾱ)p(z|x)
])

.

Note that for any arbitrary p(u, v, x) we have

G(p(u, v, x)) =− αH(Y )− ᾱH(Z) + I(U ;Y ) + I(V ;Z)− I(U ;V ) +
∑
x

p(x)ax

=− αH(Y )− ᾱH(Z)−H(U |Y )−H(V |Z) +H(U, V ) +
∑
x

p(x)ax



=
∑

u,v,x,y,z

p(u, v, x)T (y, z|x) log p(u|y)p(v|z)p(y)αp(z)ᾱeax

p(u, v)

=
∑
u,v

p(u, v)

(
log
∏
x,y

(p(u|y)p(y)α)T (y|x)p(x|u,v) + log
∏
x,z

(p(v|z)p(z)ᾱ)T (z|x)p(x|u,v) + log

∏
x(e

ax)p(x|u,v)

p(u, v)

)

≤ log
∑
u,v

(∏
x

(∏
y,z

(p(u|y)p(v|z)p(y)αp(z)ᾱ)T (y,z|x)eax

)p(x|u,v))

≤ log

(∑
u,v

max
x

∏
y,z

(p(u|y)p(v|z)p(y)αp(z)ᾱ)T (y,z|x)eax

)

= log

(∑
u,v

max
x

[
eax

∏
y

(p(u|y)p(y)α)T (y|x)
∏
z

(p(v|z)p(z)ᾱ)T (z|x)

])

≤ max
q(u,y),r(v,z)

log

(∑
u,v

max
x

[
eax

∏
y

(q(u|y)q(y)α)T (y|x)
∏
z

(r(v|z)r(z)ᾱ)T (z|x)

])
.

Next, we show that for any arbitrary q(u, y), r(v, z) we have

F (T, {ax}) ≥ log

(∑
u,v

max
x

[
eax

∏
y

(q(u|y)q(y)α)p(y|x)
∏
z

(r(v|z)r(z)ᾱ)p(z|x)
])

. (14)

This would complete the proof by taking the maximum over q(u, y), r(v, z). Note that for any p(u, v, x) we have

−H(U |Y ) ≥
∑
u,y

p(u, y) log q(u|y), −H(Y ) ≥
∑
y

p(y) log q(y),

−H(V |Z) ≥
∑
v,z

p(v, z) log r(v|z), −H(Z) ≥
∑
z

p(z) log r(z).

Consequently,

F (T, {ax}) = max
p(u,v,x)

−αH(Y )− ᾱH(Z) + I(U ;Y ) + I(V ;Z)− I(U ;V ) +
∑
x

p(x)ax

= max
p(u,v,x)

−αH(Y )− ᾱH(Z) +H(U, V )−H(U |Y )−H(V |Z) +
∑
x

p(x)ax

≥ max
p(u,v,x)

∑
u,v,x,y,z

p(u, v, x)T (y, z|x) log q(u|y)r(v|z)q(y)αr(z)ᾱ

p(u, v)e−ax
(15)

=
∑
u,v

p(u, v)

(
log
∏
y

(p(u|y)p(y)α)T (y|x)p(x|u,v) + log
∏
z

(p(v|z)p(z)ᾱ)T (z|x)p(x|u,v) + log
(eax)p(x|u,v)

p(u, v)

)
. (16)

For a fixed p(x|u, v), the maximum of the lower bound over p(u, v) (the expression is concave in p(u, v)) can be calculated
exactly; the maximum occurs at p(u, v) given by

e−K

[
eax

∏
y

(q(u|y)q(y)α)T (y|x)
∏
z

(r(v|z)r(z)ᾱ)T (z|x)

]p(x|u,v)
.

If we substitute this value of p(u, v) back into (16), we get that K ≤ F (T, {ax}). Since
∑

u,v p(u, v) = 1, we obtain

eK =
∑
u,v

[
eax

∏
y

(q(u|y)q(y)α)T (y|x)
∏
z

(r(v|z)r(z)ᾱ)T (z|x)

]p(x|u,v)
.

Hence, by taking logarithms and using K ≤ F (T, {ax}),

F (T, {ax}) ≥K = log

∑
u,v

[
eax

∏
y

(q(u|y)q(y)α)T (y|x)
∏
z

(r(v|z)r(z)ᾱ)T (z|x)

]p(x|u,v) .

Now taking the maximum over p(x|u, v) on the right-hand-side yields a lower bound in (14) on F (T, {ax}).

Remark 4. In (12), the expression depends on the marginals p(u, x) and p(v, x) only. This decoupling is in a similar spirit as
the one implied by the Markovity conjecture.
Remark 5. Note that (13) can be written as

max
q(u,y),r(v,z)

log

(∑
u,v

q(u)r(v)max
x

[
eax

∏
y

(q(y|u)q(y)−ᾱ)p(y|x)
∏
z

(r(z|v)r(z)−α)p(z|x)
])

which can be compared with (9) and (10).



A. Properties of the maximizer
Take an arbitrary mapping U ×V → X . We can denote the mapping by xuv for every pair (u, v). Therefore, a lower bound for

F (T, {ax}) (the value of F (T, {ax}) is given by maximizing over all mappings) involves the maximization over q(u, y), r(v, z)
of (∑

u,v

[
eaxu,v

∏
y,z

(q(u|y)q(y)α)T (y|xu,v)(r(v|z)r(z)ᾱ)T (z|xu,v)

])
.

Lemma 2. The above expression is concave in q(u|y). It is also concave in q(y). Similarly, it is concave in r(z). Also, concave
in r(v|z).

Proof. The pmf q(u|y) satisfies
∑

u q(u|y) = 1. If we relax this constraint and consider the expression for any q(u|y) ≥ 0,
Lemma 3 shows that the expression is jointly concave in q(u|y) since

∑
y T (y|xuv) = 1. The concavity should also hold in the

restricted space when we impose
∑

u q(u|y) = 1. Thus, the expression is concave in q(u|y); it is also concave in q(y); similarly
in r(z), and also in r(v|z).

Lemma 3. Take some ai ≥ 0. Then, the function f(x1, x2, · · · , xn) = xa1
1 xa2

2 xa3
3 · · ·xan

n is jointly concave if
∑

i ai ≤ 1.

Proof. The Hessian is proportional to a matrix whose (i, i) entry is ai(ai−1)
x2
i

, and whose (i, j) entry for i ̸= j is aiaj

xixj
. Thus, we

need to show that ∑
i

ai(ai − 1)

x2
i

β2
i +

∑
i ̸=j

aiaj

xixj
βiβj ≤ 0.

Equivalently,

∑
i

ai

x2
i

β2
i ≥

(∑
i

aiβi

xi

)2

.

This follows from the Cauchy-Schwartz inequality:(∑
i

ai

x2
i

β2
i

)(∑
i

ai

)
≥

(∑
i

aiβi

xi

)2

.

V. DISCUSSION AND CONCLUSION

Determining the capacity region of a two-receiver broadcast channel is a central open problem in network information theory.
Marton’s inner bound is potentially the capacity region, and verifying its optimality or sub-optimality relies heavily on being able
to evaluate the optimization problems defining the region. In this paper, based on numerical evidence, we proposed a conjecture
regarding the optimizers that greatly simplifies and decouples the optimization problem. Even if one can prove the additivity
within this class (without needing to prove the conjecture), one would have shown that Marton’s region is the capacity region.
Further, we also demonstrated an alternate characterization for the sum rate that establishes a similar decoupling.
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APPENDIX

Γλ
M (T ) = max

(R1,R2)∈RM

R1 + λR2

= max
p(u,v,w,x)

min{I(W ;Y ), I(W ;Z)}+ I(U ;Y |W ) + I(V ;Z|W )− I(U ;V |W ) + (λ− 1)I(V,W ;Z)

= max
p(u,v,w,x)

min
α∈[0,1]

αI(W ;Y ) + (λ− α)I(W ;Z) + I(U ;Y |W ) + λI(V ;Z|W )− I(U ;V |W )

(a)
= min

α∈[0,1]
max

p(u,v,w,x)
αI(W ;Y ) + (λ− α)I(W ;Z) + I(U ;Y |W ) + λI(V ;Z|W )− I(U ;V |W )

= min
α∈[0,1]

max
p(x)

[
αH(Y ) + (λ− α)H(Z) + max

p(u,v,w|x)

{
− αH(Y |W )− (λ− α)H(Z|W ) + I(U ;Y |W ) + λI(V ;Z|W )− I(U ;V |W )

}]
= min

α∈[0,1]
max
p(x)

[
αH(Y ) + (λ− α)H(Z) + C

{
max

p(u,v|x)
−αH(Y )− (λ− α)H(Z) + I(U ;Y ) + λI(V ;Z)− I(U ;V )

}]
.

where C{} is the upper concave envelope, and (a) follows by a min-max exchange [5]. By convex duality, we have

C{ max
p(u,v|x)

−αH(Y )− (λ− α)H(Z) + I(U ;Y ) + λI(V ;Z)− I(U ;V )} = min
ax

[
F (T, {ax})−

∑
x

p(x)ax

]
.

Thus, Marton’s inner bound becomes

Γλ
M (T ) = min

α∈[0,1]
max
p(x)

{
αH(Y ) + (λ− α)H(Z) + min

ax

[
F (T, {ax})−

∑
x

p(x)ax

]}
.
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