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Abstract

In this paper, we present a family of conjectures on the optimality of the dictator function among all Boolean functions for
a new family of Φ-entropies. Our main theorem shows that there is an ordering of these conjectures, in that if the conjecture is
established for a value α, then it holds for any β : β ≥ α. For the parameter range 1

2
≤ α, β < 1, this family of conjectures is

stronger than the mutual information conjecture, originally proposed in a paper by Courtade and Kumar. By considering a limiting
value of the noise parameter ρ, we show how these conjectures relate to isoperimetric inequalities on the Boolean Hypercube of
a flavor first considered by Talagrand and later by Kahn and Park. Finally, we obtain bounds to our conjecture using ideas from
the proofs of isoperimetric inequalities. 1

I. INTRODUCTION

A. Background

Denote Hn = {−1, 1}n to be the Boolean Hypercube. The following conjecture by Kumar, appearing in [1], has received
much attention from the information theory community.

Conjecture 1 (Kumar, [1]). Let X ∼ Unif(Hn). Let Y be obtained by flipping each bit of X independently with probability
1−ρ
2 . Let f(X) be a Boolean function. Then

I(f(X);Y ) ≤ 1−H

(
1− ρ

2

)
. (1)

Here H( 1−ρ
2 ) = −( 1−ρ

2 ) log2(
1−ρ
2 )− ( 1+ρ

2 ) log2(
1+ρ
2 ) is the binary entropy function.

A weaker version of the conjecture

I(f(X); g(Y )) ≤ 1−H

(
1− ρ

2

)
, (2)

where f(X) and g(Y ) are Boolean functions was established in [2]. Earlier, Andrej Bogdanov and the second author (to whom
Kumar had mentioned his conjecture in 2011) had shown the above weaker form of the conjecture when f = g, as reported in
[1]. This conjecture was extensively studied by the second author and collaborators during a Simons workshop in 2015. There
(as reported in [8]), they reformulated Conjecture 1 using Φ-entropies (in particular, using the Jensen-Shannon divergence) and
proposed the following conjecture based on the Helliger distance.

Conjecture 2 ( [3]). Let X ∼ Unif(Hn). Let Y be obtained by flipping each bit of X independently with probability 1−ρ
2 .

Let f(X) be a Boolean function that takes values in {−1, 1}. Then√
1− E [f ]

2 − E
[√

1− ((Tρf)(Y ))
2

]
≤ 1−

√
1− ρ2. (3)

Here, Tρf is the standard Boolean operator E [f(X)|Y ]. Furthermore, it was shown (using ideas that motivated this article)
that if Conjecture 2 holds, then Conjecture 1 holds.

Samorodnitsky, [4], showed that there exists a positive ρ0 such that Conjecture 1 is true for balanced Boolean functions
when |ρ| ≤ ρ0. This result was extended by Lei Yu, [5], who showed that Conjecture 1 is true for balanced Boolean functions
for |ρ| ≤ 0.44 (approximately).

Li and Médard, [6], investigated the Boolean function that maximizes E [|Tρf |α], for a fixed mean and α ∈ [1, 2], and
conjectured the optimality of the dictator function. Barnes and Özgür, [7], showed that for balanced Boolean functions, the
Li-Médard conjecture is equivalent to the Courtade-Kumar conjecture.

Note: For the rest of the article, we assume that f(X) takes values in {−1, 1}.

1This work was supported by the following grants from the University Grants Committee of the Hong Kong Special Administrative Region: GRF14210120,
GRF14221822.
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B. Motivation and Isoperimetric Inequalities

Since the (Tρ)ρ≥0 operator forms a Markov semigroup, i.e. Tρ1 ◦ Tρ2 = Tρ1ρ2 , it is intuitively expected that the above
conjectures would be harder to prove as ρ becomes closer to one. (By symmetry, we assume that ρ takes values in [0, 1].) The
results obtained so far by the community seem to corroborate this belief. However, one of the many indications of the validity
of Conjecture 1 rests on the observation that as ρ ↑ 1 (see Remark 1), Conjecture 1 would hold provided that for all balanced
functions, i.e. f : E [f ] = 0, we have

E [sf (X)] ≥ 1,

where sf (X) (or the sensitivity of the function at X) denotes the number of neighbours of X where the function takes the
opposite sign. On the other hand, the above statement is a special case of Harper’s isoperimetric inequality and immediately
follows from Boolean Fourier Analysis.
Remark 1. When ρ = 1, the conjectured Boolean function inequalities are trivially true, and equality holds if and only if f
is balanced. Then, one can consider the derivative (in ρ) of the conjectured inequality at ρ = 1 for balanced functions and
deduce the inequality about the sensitivity of the function.

However, a similar statement for Conjecture 2 is unknown. It was known that as ρ ↑ 1, Conjecture 2 would hold provided
that for all balanced functions, i.e. f : E [f ] = 0, we have

E
[√

sf (X)

]
≥ 1.

It turns out that the above statement has received considerable attention from the probability community, and several interesting
results have been established.

A well-known result is Talagrand’s isoperimetric inequality on the Boolean Hypercube. Equip the vertices in Hn with the
uniform probability measure. Let A be a subset of vertices of Hn and for x ∈ A, let hA(x) be defined as the number of
neighbors of x that do not belong to A (and hA(x) = 0 if x /∈ A). Then Talagrand [8] established that

E
[√

hA

]
≥

√
2µ(A)(1− µ(A)).

If one defines f(x) = (−1)1Ac (x), then observe that sf (x) = hA(x) + hAc(x). Further as one of hA(x) or hAc(x) = 0 at
every x, we also see that sαf (x) = hαA(x) + hαAc(x) for any α > 0. Therefore Talagrand’s isoperimetric inequality implies that
for balanced functions,

E
[√

sf (X)

]
≥ 1√

2
.

Bobkov improved this in [9] to show that for balanced Boolean functions,

E
[√

sf (X)

]
≥
√

2

π
.

Finally, a recent result, [10], implies that for balanced Boolean functions,

E
[√

sf (X)

]
≥ 0.91.

If one were to consider alternately E
[
sαf (X)

]
, note that for any α > 0, the dictator function yields a value of one. It was

known (see [8]) that for α < 1
2 , the majority function would yield a value lower than one. On the other hand, a rather recent

result by Kahn and Park [11] showed that

E
[
h
log2( 3

2 )
A

]
≥ 2µ(A)(1− µ(A)).

This implies that for all balanced Boolean functions

E
[
s
log2( 3

2 )
f (X)

]
≥ 1.

Building on this work, [10], proved that for ∀µ(A) ≥ 1
2

E
[
h0.53A

]
≥ 2µ(A)(1− µ(A)).

This implies that for all balanced Boolean functions

E
[
s0.53f (X)

]
≥ 1.

The main contribution of this work is the following:
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• we present a family of conjectures parameterized by α, 12 ≤ α ≤ 2, where α = 1
2 corresponds to Conjecture 2; α = 1

corresponds to Conjecture 1, and α = 2 corresponds to a known statement about the optimality of the dictator function.
Further, we prove that establishing the conjecture for any α in this interval would imply the conjecture for any β : α ≤
β ≤ 2.

• we obtain a lower bound for E
[√

1− ((Tρf)(Y ))2
]
, equivalently, an upper bound for Conjecture 2, by borrowing on

ideas used by Bobkov [9] that improved on Talagrand’s isoperimetric inequality.

II. MAIN

A. Preliminaries

As given by Chafaï [12], the Φ entropy of a function f is defined by

HΦ(f) := E [Φ(f)]− Φ(E [f ]),

where Φ(x) is a convex function.
1) A new family of Φ-Entropies: We define a parameterized family of functions Φα : [0, 1] 7→ [0, 1], α ̸= 1 to be

Φα(p) = 1−
α
(
(pα + (1− p)α)

log2 α
α−1 − 1

)
1− α

. (4)

Note that limα→1 Φα(p) = 1−H2(p), where H2(p) is the binary entropy function, so we define Φ1(p) accordingly.

Remark 2. Notice that Φα(p) can also be written as the form Φα(p) = 1 − α(α−Hα(p)−1)
1−α , where Hα(p) =

1
1−α (log2(p

α +
(1− p)α) is the Rényi entropy of a binary random variable taking values with probability {p, 1− p}, respectively.

The reader can verify the following immediate results about this parameterized family.

Lemma 1. The parameterized family {Φα}, α > 0 satisfies the following properties:

(i) Φ 1
2
(p) = 1− 2

√
p(1− p),

(ii) Φ2(p) = (2p− 1)2,
(iii) Φα(

1
2 ) = 0,

(iv) Φα(0) = 1,
(v) Φα(p) = Φα(1− p), p ∈ [0, 1],
(vi) Φα(p) is decreasing in the interval p ∈ [0, 12 ] and convex in the interval p ∈ [0, 1].

A proof of the last part is provided in the full version [13].
A natural extension of the family of functions to generalized discrete probability distributions is the following
Denote p = (p1, p2, · · · , pn) be a probability vector, we define the following

Φα(p) =
αlog2 n

(
n− log2 α − (

∑n
i=1 p

α
i )

log2 α
α−1

)
1− αlog2 n

,

=
1− αlog2 n−Hα(p)

1− αlog2 n
.

Denote Unif(n) to be the uniform distribution of a set with size n and π(p) be any permutation of p. The above function
satisfies the following properties.

(i) Φ 1
2
(p) = 1− 2

∑
i<j

√
pipj

n−1 ,
(ii) Φ1(p) = 1− H2(p)

log2 n

(iii) Φ2(p) = 1− 2n
∑

i<j pipj

n−1 ,
(iv) Φα(Unif(n)) = 0,
(v) Φα(π((1, 0, · · · , 0))) = 1,
(vi) Φα(p) = Φα(π(p)),
(vii) Φα(p) is jointly convex for ∀α ≤ 2,
(viii) Φα(tp+ (1− t)Unif(n)) is non-negative and monotonically increasing with respect to t ∈ [0, 1].
We attach the proof of the last two items in the appendix.

The main family of conjectures, in this article, is the following:

Conjecture 3. Let X ∼ Unif(Hn). Let Y be obtained by flipping each bit of X independently with probability 1−ρ
2 . Let f(X)

be a Boolean function that takes values in {−1, 1}. Then, for any 1
2 ≤ α < 2, we conjecture that

HΦα

(
1− (Tρf)(Y )

2

)
≤ HΦα

(
1− ρY1

2

)
, (5)
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where Y1 is the first co-ordinate of Y .

As the right-hand-side corresponds to the evaluation of the left-hand-side for the dictator function, i.e. f(X) = X1, the
conjecture can be rephrased as saying that the dictator function maximizes the left-hand-side.
Remark 3. The following points are worth noting:

• When α = 1
2 , the Conjecture 3 reduces to Conjecture 2.

• When α = 1, the Conjecture 3 reduces to Conjecture 1.
• When ρ→ 1, the validity of the conjecture in the limit (ρ→ 1) is the same as verifying for all balanced Boolean functions

E
[
sαf (X)

]
≥ 1.

This is true, [10], if α ≥ 0.53. Furthermore, the above statement is false when α < 1
2 . This implies that Conjecture 3

cannot be extended to α < 1
2 .

• When α = 2, the equivalent statement would be

E
[
((Tρf)(Y ))2

]
− (E [f ])2 ≤ ρ2,

which is easily verified by considering the Fourier representation and Parseval’s theorem.
One of the main results of this paper is the following:

Theorem 1. If Conjecture 3 holds for any α ∈ [ 12 , 2), it also holds for any β satisfying α ≤ β < 2.

Remark 4. This shows that proving Conjecture 2 will prove Conjecture 3; however proving Conjecture 3 for some alpha in
( 12 , 1] would be sufficient to imply Conjecture 1. This family is motivated by the fact that recent success has been made in the
lower bound for E

[
sαf (X)

]
, for α = log2

(
3
2

)
.

We will use the following standard Boolean Fourier representation,

f(x) = f̂∅ +
∑

S⊂[1:n],|S|≥1

f̂SχS(x).

Note that E [f ] = f̂∅. Using this notation, Conjecture 2 is equivalent to requiring that all Boolean

E
[√

1− ((Tρf)(Y ))
2

]
≥
√

1− f̂2∅ +
√
1− ρ2 − 1.

In Theorem 2 below, we show how the tools used in [9] for deriving isoperimetric inequalities can lead to a lower bound for
the left-hand-side. In particular. we show that

Theorem 2. Let X ∼ Unif(Hn). Let Y be obtained by flipping each bit of X independently with probability 1−ρ
2 . Let f(X)

be a Boolean function taking values in {−1, 1}. Let

g(x) =
1√
2π
e−

x2

2 , Ĝ(x) =

∫ x

−∞
g(t)dt.

Define G(a) = 2g
(
Ĝ−1

(
1+a
2

))
. Then,

E
[√

1− ((Tρf)(Y ))2
]
≥ G

(
f̂∅

)√
1− ρ2. (6)

Remark 5. There are non-trivial regimes of parameters (E [f ] , ρ) where√
1− (E [f ])2 +

√
1− ρ2 − 1 ≤ G(E [f ])

√
1− ρ2.

For this set of parameters, Theorem 2 gives a proof of Conjecture 2. However, we are more interested in demonstrating the
link between proof ideas in isoperimetric inequalities and the family of Conjectures.

From Theorem 2 we obtain that √
1− f̂2∅ − E

[√
1− ((Tρf)(Y ))

2

]
≤
√
1− f̂2∅ −G(f̂∅)

√
1− ρ2,

or equivalent

HΦ 1
2

(
1− (Tρf)(Y )

2

)
≤
√

1− f̂2∅ −G(f̂∅)
√
1− ρ2. (7)
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III. PROOFS OF THE RESULTS

A. Proof of Theorem 1

The idea of the proof is similar to that in [3] where it was shown that Conjecture 2 would imply Conjecture 1. Let us denote
Ψα(p) = 1−Φα(p) and for α > 0, let us define Ψ−1

α : [0, 1] 7→ [0, 12 ] as the inverse mapping to the interval [0, 12 ]. This is well-
defined from part (vi) of Lemma 1. Further, again using the same result, if 0 ≤ y1 < y2 < 1, we have Ψ−1

α (y1) < Ψ−1
α (y2)

and consequently Ψβ

(
Ψ−1

α (y1)
)
< Ψβ

(
Ψ−1

α (y2)
)
. Therefore Ψβ

(
Ψ−1

α (y)
)

is non-negative and increasing in [0, 1].
We divide the proof of Theorem 1 into two parts.
1) Part 1: 1

2 ≤ α ≤ β ≤ 1:

Lemma 2. For 1
2 ≤ α ≤ β ≤ 1, the function Ψβ

(
Ψ−1

α (y)
)

is convex in y, for y ∈ [0, 1].

Proof. The proof is in the full version [13].

Note that the inequality in Conjecture 3 can be equivalently written as

Ψα

(
1− E [(Tρf)(Y )]

2

)
− E

[
Ψα

(
1− (Tρf)(Y )

2

)]
≤ Ψα

(
1

2

)
−Ψα

(
1− ρ

2

)
.

To complete the proof of this part, we employ a special case of a well-known weak majorization inequality (Karamata’s
inequality).

Lemma 3 (Karamata). Let f(x) is non-negative, increasing, and convex function on [0, 1], such that x1 + x2 ≤ y1 + y2 and
max{y1, y2} ≥ max{x1, x2}. Then

f(x1) + f(x2) ≤ f(y1) + f(y2).

The proof of this part of Theorem 1, i.e. 1
2 ≤ α ≤ β ≤ 1, is completed by the following proposition.

Proposition 1. For 1
2 ≤ α ≤ β ≤ 1, suppose the inequality

Ψα

(
1− E [(Tρf)(Y )]

2

)
− E

[
Ψα

(
1− (Tρf)(Y )

2

)]
≤ Ψα

(
1

2

)
−Ψα

(
1− ρ

2

)
holds, then

Ψβ

(
1− E [(Tρf)(Y )]

2

)
− E

[
Ψβ

(
1− (Tρf)(Y )

2

)]
≤ Ψβ

(
1

2

)
−Ψβ

(
1− ρ

2

)
also holds.

Proof. The second statement is equivalently written as requiring to show

Ψβ

(
Ψ−1

α

(
Ψα

(
1− E [(Tρf)(Y )]

2

)))
− E

[
Ψβ

(
Ψ−1

α

(
Ψα

(
1− (Tρf)(Y )

2

)))]
≤ Ψβ

(
Ψ−1

α

(
Ψα

(
1

2

)))
−Ψβ

(
Ψ−1

α

(
Ψα

(
1− ρ

2

)))
.

In light of Lemma 2 and Lemma 3, by taking f(x) = Ψβ

(
Ψ−1

α (x)
)
, x1 = Ψα

(
1−E[(Tρf)(Y )]

2

)
, x2 = Ψα

(
1−ρ
2

)
, y1 =

E
[
Ψα

(
1−(Tρf)(Y )

2

)]
, and y2 = Ψα

(
1
2

)
= 1, it suffices to show that x1 + x2 ≤ y1 + y2 (as y2 = 1 ≥ max{x1, x2}), or

equivalently

Ψα

(
1− E [(Tρf)(Y )]

2

)
− E

[
Ψα

(
1− (Tρf)(Y )

2

)]
≤ Ψα

(
1

2

)
−Ψα

(
1− ρ

2

)
.

This shows that if Conjecture 3 folds for α, then it also holds for β for 1
2 ≤ α ≤ β ≤ 1.
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2) Part 2: 1 ≤ α ≤ β ≤ 2: The proof of this part is more or less the same as the previous part.
We prove a similar convexity result as in Lemma 2.

Lemma 4. For 1 ≤ α ≤ β ≤ 2, the function Ψβ

(
Ψ−1

α (y)
)

is convex in y, for y ∈ [0, 1].

Proof. The proof is given in the full version [13].

Given this convexity, we now can apply Proposition 1 (with 1 ≤ α ≤ β ≤ 2) to complete the proof of Part 2.
Remark 6. Notice that the limit of Ψα at α = 1 is well-defined and equals the Shannon entropy. Hence, establishing the
conjecture for α < 1, would imply Conjecture 1 (using Part 1), and Conjecture 1 would imply Conjecture 3 for any 1 < β ≤ 2
(using Part 2).

This completes the proof of Theorem 1.

B. Proof of Theorem 2

The techniques used in all the works to obtain isoperimetric inequalities on the Boolean Hypercube revolve around an induc-
tive proof strategy to derive a functional inequality. Here, we adopt a similar strategy to get a lower bound for E

[√
1− ((Tρf)(Y ))2

]
in terms of the mean of the Boolean function.

Given a Boolean function f , we define f+ = f(x̃,+1) and f− = f(x̃,−1) to be two child functions on a smaller dimensional
Hypercube generated by f(x), where x is a vector in the Hypercube of dimension n+1 and x̃ is in the subcube of dimension
n. Elementary calculations yield that

(Tρf)(x) =
1 + ρxn+1

2
(Tρf+)(x̃) +

1− ρxn+1

2
(Tρf−)(x̃).

With appropriate abuse of notation for simplicity, it follows that

1− Tρf
2 =

(
1 + ρxn+1

2

)2

(1− Tρf
2
+)

+

(
1− ρxn+1

2

)2

(1− Tρf
2
−)

+ 2

(
1− ρ2

4

)
(1− Tρf+Tρf−).

Consequently,

E
[√

1− Tρf2
]
=

1

2
E

[{(
1 + ρ

2

)2

(1− Tρf
2
+)

+

(
1− ρ

2

)2

(1− Tρf
2
−)

+ 2

(
1− ρ2

4

)
(1− Tρf+Tρf−)

} 1
2
]

+
1

2
E

[{(
1− ρ

2

)2

(1− Tρf
2
+)

+

(
1 + ρ

2

)2

(1− Tρf
2
−)

+ 2

(
1− ρ2

4

)
(1− Tρf+Tρf−)

} 1
2
]
.
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Note that for a, b, c ≥ 0, the function: Φ(x, y, z) :=
√
ax2 + by2 + cz2 is jointly convex. Therefore, we have

E
[√

1− Tρf2
]

≥ 1

2

{(
1 + ρ

2

)2(
E
[√

(1− Tρf2+)

])2

+

(
1− ρ

2

)2(
E
[√

(1− Tρf2−)

])2

+ 2

(
1− ρ2

4

)(
E
[√

(1− Tρf+Tρf−)

])2
} 1

2

+
1

2

{(
1− ρ

2

)2(
E
[√

(1− Tρf2+)

])2

+

(
1 + ρ

2

)2(
E
[√

(1− Tρf2−)

])2

+ 2

(
1− ρ2

4

)(
E
[√

(1− Tρf+Tρf−)

])2
} 1

2

.

The third term can be expressed as follows:√
1− Tρf+Tρf− =

{
1

2

√
1− Tρf2+

2

+
1

2

√
1− Tρf2−

2

+
1

2
(Tρf+ − Tρf−)

2

} 1
2

.

Therefore

E
[√

1− Tρf+Tρf−

]
≥

{
1

2
E
[√

1− Tρf2+

]2
+

1

2
E
[√

1− Tρf2−

]2
+

1

2
E [Tρf+ − Tρf−]

2

} 1
2

.

Let φ : [−1, 1] 7→ (0, 1), satisfying φ(−1) = φ(1) = 0, and

1

2

{(
1 + ρ

2

)2

φ2(a) +

(
1− ρ

2

)2

φ2(b)

+ 2

(
1− ρ2

4

)
1

2

(
φ2(a) + φ2(b) + (a− b)2

)} 1
2

+
1

2

{(
1− ρ

2

)2

φ2(a) +

(
1 + ρ

2

)2

φ2(b)

+ 2

(
1− ρ2

4

)
1

2

(
φ2(a) + φ2(b) + (a− b)2

)} 1
2

≥ φ

(
a+ b

2

)
,
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for all −1 ≤ a, b ≤ 1. By induction, it is immediate from above any such φ(a) provides a lower bound for E
[√

1− ((Tρf)(Y ))2
]
,

with E [f ] = a. Simplifying, the above functional condition is equivalent to{
1 + ρ

2
φ2(a) +

1− ρ

2
φ2(b) +

(
1− ρ2

4

)
(a− b)2

} 1
2

+

{
1− ρ

2
φ2(a) +

1 + ρ

2
φ2(b) +

(
1− ρ2

4

)
(a− b)2

} 1
2

≥ 2φ

(
a+ b

2

)
.

Now, we assume that φ(a) =
√
1− ρ2ψ(a), among which ψ(a) does not depend on ρ. (This restricts our choice and perhaps

leads to a sub-optimal lower bound). Now have that{
1 + ρ

2
ψ2(a) +

1− ρ

2
ψ2(b) +

(a− b)2

4

} 1
2

+

{
1− ρ

2
ψ2(a) +

1 + ρ

2
ψ2(b) +

(a− b)2

4

} 1
2

≥ 2ψ

(
a+ b

2

)
.

The left-hand-side is concave and symmetric in ρ, for ρ ∈ [−1, 1], therefore the minimum is attained at ρ = 1 (as value at
ρ = 1 is same as ρ = −1). Therefore Ψ(a) must satisfy{

ψ2(a) +
(a− b)2

4

} 1
2

+

{
ψ2(b) +

(a− b)2

4

} 1
2

≥ 2ψ

(
a+ b

2

)
,

for −1 ≤ a, b ≤ 1. Let ψ̂(x) = 1
2ψ(2x− 1). Therefore, we require ψ̂(0) = ψ̂(1) = 0 and satisfies

1

2

{
ψ̂2(x) +

(x− y)2

4

} 1
2

+
1

2

{
ψ̂2(y) +

(x− y)2

4

} 1
2

≥ ψ̂

(
x+ y

2

)
,

for 0 ≤ x, y ≤ 1. This is precisely the functional recursion considered and solved by Bobkov [9] while studying the isoperimetric
inequality, except ψ̂(x) ∈ (0, 12 ). The following was proved in [9]. Let

g(x) =
1√
2π
e−

x2

2 , Ĝ(x) =

∫ x

−∞
g(t)dt.

Then I(x) = g
(
Ĝ−1(x)

)
, 0 ≤ x ≤ 1 is the maximal non-negative function satisfying the functional recursion of ψ̂.

Consequently G(a) = 2I
(
1+a
2

)
is a non-negative function satisfying the functional recursion of ψ.

Therefore, putting the above observations and noting that E [f ] = f̂∅, we obtain that

E
[√

1− ((Tρf)(Y ))2
]
≥ G

(
f̂∅

)√
1− ρ2,

completing the proof of Theorem 2.

IV. FUTURE WORK AND CONCLUSION

In this paper, we proposed a parameterized family of phi=entropies and related conjectures on the optimality of Boolean
functions and related a limiting case of this conjecture to isoperimetric inequalities on the Boolean Hypercube. Further, we
showed that the family of conjectures is ordered (in the sense that establishing the conjecture for a particular value would
imply the conjecture for higher values). Finally, we showed that mimicking proof techniques in the isoperimetric inequalities
leads to non-trivial lower bounds to our conjectures.

As an immediate future work, it would be useful to see if one can recover the functional recursion used by Kahn and
Park [11] (in the sense of the proof of Theorem 2) for some α ∈ ( 12 , 1). An immediate consequence would be the proof of
Conjecture 1 for all balanced functions.
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APPENDIX: ON THE OPTIMALITY OF DICTATOR FUNCTIONS AND ISOPERIMETRIC INEQUALITIES ON BOOLEAN
HYPERCUBES

A. Proof of Lemma 1

Lemma 5. The following inequality holds for a ̸= b

e
a+b
2 <

ea − eb

a− b
<
ea + eb

2
.

Proof. This is well-known, but we give an argument here for completeness. Let a − b = u and w.l.o.g assume that u > 0.
Now, multiplying by e−b on both sides, we need to show

e
u
2 <

eu − 1

u
<
eu + 1

2
.

Now, by performing Taylor-Series expansion and comparing coefficients, the inequality is immediate.

Remark 7. Observing that by setting ta = ea ln t, t > 1, Lemma 5 implies that

t
a+b
2 <

ta − tb

(a− b) ln t
<
ta + tb

2
.

Proof of Lemma 1. We first prove the monotonicity,

Φ′
α(p) =

α2 log2 α

(1− α)2
(pα + (1− p)α)

log2 α
α−1 −1

× (pα−1 − (1− p)α−1).

When α < 1, p ∈ [0, 12 ], we have that log2 α < 0 and pα−1 ≥ (1− p)α−1, the function is monotonically decreasing.
When α > 1, p ∈ [0, 12 ], we have that log2 α > 0 and pα−1 ≤ (1− p)α−1, the function is also monotonically decreasing.
Lastly, when α = 1, the monotonicity and convexity follow immediately from the corresponding properties of the binary

Shannon entropy function.
For the proof of convexity, if α > 1, we have that

Φ′′
α(p) =

α3 log2 α

(1− α)2
(pα + (1− p)α)

log2 α
α−1 −2

×
(
log2 α

α− 1
− 1

)
(pα−1 − (1− p)α−1)2

+
α2 log2 α

(α− 1)
(pα + (1− p)α)

log2 α
α−1 −1

× (pα−2 + (1− p)α−2).

Notice that all the terms here are non-negative for p ∈ [0, 1], hence Φα(p) is convex on [0, 1].
When α ∈ [ 12 , 1), it suffices to show that(

1

α
− 1

)
(pα + (1− p)α)(pα−2 + (1− p)α−2)

≥
(
log2 α

α− 1
− 1

)
(pα−1 − (1− p)α−1)2.

This holds when p = 1
2 . We divide both sides by p2α−2 and let t = 1−p

p , t ̸= 1. By symmetry (function on the left-hand-side
remains unchanged when t is replaced by 1

t ), it suffices to show that for t > 1

(1 + tα)(1 + tα−2)

(1− tα−1)2
≥ α(α− 1− log2 α)

(1− α)2
.

It is immediate to verify that α(α− 1− log2 α) is monotonically decreasing with respect to α when α ∈ [ 12 , 1]. The derivative
in the interval has a maximum value 1− 1

ln 2 < 0. Therefore, the right-hand-side is upper bounded by 1
4(1−α)2 .

Hence, it suffices to show that

(1 + tα)(1 + tα−2) ≥ (1− tα−1)2

4(1− α)2
.

By Remark 7, it suffices to show

4(1 + tα)(1 + tα−2) ≥
[(

1 + tα−1

2

)
ln t

]2
.
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This is equivalent to

16 +
16tα−2(t− 1)2

(1 + tα−1)2
≥ ln2 t.

When ln t ≤ 4, the inequality holds trivially.
When ln t > 4, since tα−2 ≥ t−

3
2 and (1 + tα−1)2 ≤ 2, it suffices to show that

16 +
4(t− 1)2

t
3
2

≥ ln2 t.

Let s = 1
2 ln t ∈ [2,∞), it suffices to show that

4 + es − 2e−s + e−3s ≥ s2.

Since e−s < 1, it suffices to verify that

2 + es ≥ s2,

which is trivially true when s ≥ 2.
Combining the above results, for ∀α ∈ [ 12 , 2], we have that Φα(p) is convex with respect to p for ∀p ∈ [0, 1].

Proof of generalized version of Lemma 1. We first prove the non-negativity and the monotonicity of the function.
When α < 1, to show the non-negativity only suffices to show that

n1−α ≥
n∑

i=1

pαi .

This is equivalent to

1 ≥
n∑

i=1

(npi)
α

n
.

Since α < 1, by Power Mean Inequality, we have that(
n∑

i=1

(npi)
α

n

) 1
α

≤
n∑

i=1

npi
n

= 1.

To show the monotonicity, it suffices to show that Γ(t) =
∑n

i=1

(
t
(
pi − 1

n

)
+ 1

n

)α
is monotonically decreasing.

Notice that

Γ′(t) = α

n∑
i=1

(
t

(
pi −

1

n

)
+

1

n

)α−1(
pi −

1

n

)
Γ′′(t) = α(α− 1)

n∑
i=1

(
t

(
pi −

1

n

)
+

1

n

)α−2(
pi −

1

n

)2

.

We have that Γ′′(t) ≤ 0,∀t. Therefore, Γ′(t) is monotonically decreasing. Since we also have that Γ′(0) = 0, we conclude
that Γ′(t) ≤ 0 and this implies that Γ(t) is monotonically decreasing. Combining all the results, we conclude that for α < 1,
Φα(tp+ (1− t)Unif(n)) is non-negative and monotonically increasing with respect to t ∈ [0, 1].

When α > 1, to show the non-negativity only suffices to show that

n1−α ≤
n∑

i=1

pαi .

Since α > 1, by Power Mean Inequality, we have that(
n∑

i=1

(npi)
α

n

) 1
α

≥
n∑

i=1

npi
n

= 1.

Hence, the non-negativity is true.
To show the monotonicity, it suffices to show that Γ(t) =

∑n
i=1

(
t
(
pi − 1

n

)
+ 1

n

)α
is monotonically increasing.



12

Notice that

Γ′(t) = α

n∑
i=1

(
t

(
pi −

1

n

)
+

1

n

)α−1(
pi −

1

n

)
Γ′′(t) = α(α− 1)

n∑
i=1

(
t

(
pi −

1

n

)
+

1

n

)α−2(
pi −

1

n

)2

.

We have that Γ′′(t) ≥ 0,∀t. Therefore, Γ′(t) is monotonically increasing. Since we also have that Γ′(0) = 0, we conclude
that Γ′(t) ≥ 0 and this implies that Γ(t) is monotonically increasing. Combining all the results, we conclude that for α > 1,
Φα(tp+ (1− t)Unif(n)) is non-negative and monotonically increasing with respect to t ∈ [0, 1].

For 1 < α ≤ 2, to show that Φα(p) is jointly convex, it suffices to show ζ(p) = (
∑n

i=1 p
α
i )

log2 α
α−1 is jointly convex.

∂2ζ(p)

∂pk∂pj
= α2 log2 α

α− 1

(
log2 α

α− 1
− 1

)( n∑
i=1

pαi

) log2 α
α−1 −2

pα−1
j pα−1

k ,∀j ̸= k

∂2ζ(p)

∂p2j
=

α2 log2 α

α− 1

(
log2 α

α− 1
− 1

)( n∑
i=1

pαi

) log2 α
α−1 −2

p2α−2
j + α(α− 1)

log2 α

α− 1

(
n∑

i=1

pαi

) log2 α
α−1 −1

pα−2
j


Notice that this is the sum of a PSD diagonal matrix and an all-one matrix which multiplies a diagonal matrix on the left and
right. Therefore, this is PSD and Φα(p) is jointly convex.

When 0 < α < 1, we require the summation constraint and pk ≥ 0∀k.
Let D =

∑n
i=1 p

α
i , ϕ(α) =

log2 α
α−1 and we have that pn = 1−

∑n−1
i=1 pi.

Therefore, we have that

∂D

∂pk
= αpα−1

k − αpα−1
n ,∀k ̸= n,

∂2D

∂pk∂pl
= α(α− 1)pα−2

n ,∀l ̸= k, l ̸= n, k ̸= n,

∂2D

∂p2k
= α(α− 1)pα−2

k + α(α− 1)pα−2
n , k ̸= n,

∂Dϕ(α)

∂pk
= ϕ(α)Dϕ(α)−1 ∂D

∂pk
,∀k ̸= n,

∂2Dϕ(α)

∂pk∂pl
= ϕ(α)(ϕ(α)− 1)Dϕ(α)−2 ∂D

∂pk

∂D

∂pl
+ ϕ(α)Dϕ(α)−1 ∂2D

∂pk∂pl
,∀k ̸= n, l ̸= n.

It suffices to show that∑
k,l

{
(ϕ(α)− 1)α(pα−1

k − pα−1
n )(pα−1

l − pα−1
n ) +D(α− 1)pα−2

n

}
xkxl +

∑
k

D(α− 1)pα−2
k x2k ≤ 0,∀xk, xl.

We first verify that the diagonal term is negative.
This is equivalent to

D(1− α)(pα−2
k + pα−2

n ) ≥ (ϕ(α)− 1)α(pα−1
k − pα−1

n )2.

When pk = pn, the above inequality is true, we verify for pk ̸= pn. It suffices to show that

(pαk + pαn)(p
α−2
k + pα−2

n )

(pα−1
k − pα−1

n )2
≥ α(ϕ(α)− 1)

1− α
.

Let t = pk

pn
, the left-hand side is equivalent to 1+ tα−2(t+1)2

(tα−1−1)2 and the derivative with respect to α is − (t+1)2tα(tα+t) log t
(tα−t)3 . Notice

that this equation is symmetric with respect to pk and pn, therefore we can assume that t < 1. Let P (α) = 1 + tα−2(t+1)2

(tα−1−1)2 −
α(ϕ(α)−1)

1−α , we have that

P ′(α) = − (t+ 1)2tα(tα + t) log t

(tα − t)3
−

(α+ 1) log2 α+ (1− α)(1 + 1
ln 2 )

(α− 1)3

= − 1

(tα − t)3(α− 1)3

{
(α− 1)3(t+ 1)2tα(tα + t) log t+ (tα − t)3

(
(α+ 1) log2 α+ (1− α)(

1

ln 2
+ 1)

)}
.
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When 1
2 ≤ α < 1, we show that P (α) is monotonically increasing. To show this, it suffices to show that

− 1

(tα − t)3(α− 1)3
≥ 0

(tα − t)3(1− α)(
1

ln 2
+ 1) ≥ 0

(α− 1)3(t+ 1)2tα(tα + t) log t+ (tα − t)3(α+ 1) log2 α ≥ 0.

The first two inequalities are obvious, we show the third inequality.
Notice by 7, we have that

(tα − t)3

(α− 1)3 ln3 t
<

(
tα + t

2

)3

≤ t2α
(
tα + t

2

)
≤ t

(
tα + t

2

)
It suffices to show that

2(t+ 1)2tα ≥ t log2 t(α+ 1) log2
1

α

Notice that

t log2 t(α+ 1) log2
1

α
≤ 2t log2 t

≤ 8

e2

< 2.

Hence, we showed that the function is monotonically increasing with respect to α. Since when α = 1
2 , we have that α(ϕ(α)−1)

1−α =

1, we imply that P (α) > 0. Therefore, when 1
2 ≤ α < 1, we have that the diagonal entries are negative.

When 0 < α < 1
2 , notice that − (t+1)2tα(tα+t) log t

(tα−t)3 is always positive, which means that 1 + tα−2(t+1)2

(tα−1−1)2 is monotonically
increasing with respect to α. Hence, it suffices to show that

1 +
(t+ 1)2

(t− 1)2
≥ α(ϕ(α)− 1)

1− α
.

It suffices to show that

2 ≥ α(ϕ(α)− 1)

1− α
.

Notice that the right-hand side is monotonically increasing with respect to α.
Therefore, it suffices to show that

2 ≥
1
2 (ϕ(

1
2 )− 1)

1− 1
2

= 1.

The inequality is trivially true.
Combining the results above, we showed that for 0 < α < 1, all diagonal entries are negative.
Toward the proof of the convexity, we use arguments from linear algebra. We denote the following symbols

A = D(1− α)Diag(pα−2
k ),

B = D(1− α)pα−2
n 1(n−1)×(n−1),

v =
√

(ϕ(α)− 1)α
(
pα−1
1 − pα−1

n , · · · , pα−1
n−1 − pα−1

n

)T
.

Hence, it suffices to show that

A+B− vvT ⪰ 0.

Here we proved the above results for ∀k, pk > 0. If pk = 0, the convexity goes through by continuity arguments of the
probability distribution.
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Notice that A+B is a PSD matrix of size (n − 1) × (n − 1) and vvT is a rank-1 (n − 1) × (n − 1) matrix. Applying
Weyl’s inequality, we have that

λn−1(A+B− vvT ) ≥ λn−1(A+B)− λn−1(vv
T ),

λn−2(A+B− vvT ) ≥ λn−1(A+B)− λn−2(vv
T )

= λn−1(A+B)

≥ λn−1(A) + λn−1(B)

= λn−1(A)

= pα−2
n−1

> 0.

Therefore, the matrix has at most 1 negative eigenvalues and n− 2 strictly positive eigenvalues, it suffices to show that

det(A+B− vvT ) ≥ 0.

Applying the matrix determinant lemma, we have that

det(A+B− vvT ) = det(A+B)(1− vT (A+B)
−1

v).

Since det(A+B) ≥ 0, it suffices to show that

1− vT (A+B)
−1

v ≥ 0.

By Sherman-Morrison formula, we have that

(A+B)−1 = A−1 − A−1BA−1

1 +D(1− α)pα−2
n 11×(n−1)A−11(n−1)×1

.

It suffices to show that

1− vTA−1v +
vTA−1BA−1v

1 +D(1− α)pα−2
n 11×(n−1)A−11(n−1)×1

≥ 0.

This is equivalent to

(1− vTA−1v)(1 +D(1− α)pα−2
n 11×(n−1)A

−11(n−1)×1) + vTA−1BA−1v ≥ 0.

Notice that we have

A−1 =
Diag(p2−α

k )

D(1− α)
.

We can simplify the above equation to(
D(1− α)− (ϕ(α)− 1)α

n−1∑
k=1

p2−α
k (pα−1

k − pα−1
n )2

)(
1 + pα−2

n

n−1∑
k=1

p2−α
k

)
+ (ϕ(α)− 1)αpα−2

n

(
n−1∑
k=1

p2−α
k (pα−1

k − pα−1
n )

)2

≥ 0

We observe that the inequality can be written in the following form

D(1− α)(1 + pα−2
n

n−1∑
k=1

p2−α
k )− (ϕ(α)− 1)α

n−1∑
k=1

p2−α
k (pα−1

k − pα−1
n )2

≥ (ϕ(α)− 1)αpα−2
n

n−1∑
k=1

p2−α
k

n−1∑
k=1

p2−α
k (pα−1

k − pα−1
n )2 −

(
n−1∑
k=1

p2−α
k (pα−1

k − pα−1
n )

)2
 .

Observe that by Cauchy inequality, the right-hand side is positive, a necessary condition for the inequality to hold is the
left-hand side is positive.

D(1− α)(1 + pα−2
n

n−1∑
k=1

p2−α
k )− (ϕ(α)− 1)α

n−1∑
k=1

p2−α
k (pα−1

k − pα−1
n )2 ≥ 0.
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B. Proof of Lemma 2

We start with the following lemma.

Lemma 6. For t > 1 and α ∈ [ 12 , 1) we have the following inequalities:

(i) ln t ≤ (t−1)(t2+10t+1)
6t(t+1) ,

(ii) 1 ≥
(
−α lnα

ln 2 − α(1− α)
)
+
(
lnα
ln 2 + 1

ln 2 + 1− 2α
)
,

(iii) (1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥ ( 1−tα−1

1−α )2(t2−α − 1 + 5t− 5t1−α),

(iv) (1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥ 6(1−tα−1)
1−α (1 + tα)(1 + t1−α).
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(i) ln t ≤ (t−1)(t2+10t+1)
6t(t+1) ,

Proof. Set t = 1+z
1−z . As t > 1, we have z ∈ (0, 1). Note that

ln t = ln(1 + z)− ln(1− z)

=

∞∑
n=1

(−1)n+1zn

n
+

∞∑
n=1

zn

n

= 2

∞∑
k=1

z2k−1

2k − 1

≤ 2z +
2

3
z

∞∑
k=1

z2k

= 2z +
2z3

3(1− z2)
.

We plugin z = t−1
t+1 and the result follows.

(ii) 1 ≥
(
−α lnα

ln 2 − α(1− α)
)
+
(
lnα
ln 2 + 1

ln 2 + 1− 2α
)
,

Proof. This is equivalent to

α(1− α) + 2α+
−(1− α) lnα

ln 2
≥ 1

ln 2
.

This can be rewritten as

9

4
−
(
3

2
− α

)2

+
−(1− α) lnα

ln 2
≥ 1

ln 2
.

Note that 9
4 −

(
3
2 − α

)2
is increasing in the interval α ∈ [ 12 , 1], while −(1−α) lnα

ln 2 is decreasing and non-negative in the
same interval.
For α ∈ [ 23 , 1], the left-hand-side is at least as large as 9

4 −
(
3
2 − 2

3

)2
= 14

9 ≥ 1
ln 2 , and hence the desired inequality

holds in this interval. For α ∈ [ 12 ,
2
3 ], the left-hand-side is at least as large as 9

4 −
(
3
2 − 1

2

)2
+

ln( 3
2 )

3 ln 2 ≥ 1
ln 2 . Therefore,

the inequality also holds in the interval α ∈ [ 12 ,
2
3 ].

(iii) (1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥ ( 1−tα−1

1−α )2(t2−α − 1 + 5t− 5t1−α),

Proof. This is equivalent to

(1 + tα)2t(t− 5 + 5t2−α − t1−α)

≥ (
t− tα

1− α
)2(t2−α − 1 + 5t− 5t1−α).

This can be rewritten as (
5(1 + tα)2t− (

t− tα

1− α
)2
)
(t2−α − 1)

+

(
(1 + tα)2t− 5(

t− tα

1− α
)2
)
(t− t1−α) ≥ 0.

Observe that t1−α(t− t1−α) ≤ t2−α − 1. Divide both sides by t− t1−α, it suffices to show that(
5(1 + tα)2t−

(
t− tα

1− α

)2
)
t1−α

+ (1 + tα)2t− 5

(
t− tα

1− α

)2

≥ 0.

Which is equivalent to showing that

(5t1−α + 1)(1 + tα)2t ≥ (t1−α + 5)

(
t− tα

1− α

)2

.



17

Dividing (1 + tα)2(t1−α + 5) on both sides, we need to show that(
5− 24

t1−α + 5

)
t ≥

(
t− tα

(1− α)(1 + tα)

)2

.

By using Remark 7 with a = 1, b = α, we have that

t− tα

(1− α)(1 + tα)
<

ln t

2
.

Hence, it suffices to show that (
5− 24

t1−α + 5

)
t ≥

(
ln t

2

)2

.

Since t1−α ≥ 1, it further suffices to show that

t ≥
(
ln t

2

)2

.

This is true as 2
√
t− ln t increases in t when t > 1 completing the proof.

(iv) (1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥ 6(1−tα−1)
1−α (1 + tα)(1 + t1−α),

Proof. This is equivalent to showing that

(5− 5α)(t2 − 1) + (1− α)(t1+α − t1−α) (8)

− (5α+ 1)(t2−α − tα) ≥ 0.

Denote g(µ) = t1+µ−t1−µ

µ , for µ ̸= 0, and g(0) = limµ→0 g(µ) = 2t ln t. Note that g(µ) is non-negative, g(−µ) = g(µ)
and

g′(µ) =
t1−µ

µ2
(−t2µ + µ(t2µ + 1) ln t+ 1).

When x ≥ 1, we have that lnx ≥ x2−1
x2+1 . Therefore g′(µ) ≥ 0, when µ ≥ 0.

Note that inequality (8) is equivalent to

(5− 5α)g(1) + (1− α)αg(α)

− (5α+ 1)(1− α)g(1− α) ≥ 0.

Canceling out (1− α) (as α ≤ 1) we need to show that

5g(1) + αg(α)− (5α+ 1)g(1− α) ≥ 0.

Since g(x) is increasing when x ≥ 0 and α ∈ [ 12 , 1], we have g(1) ≥ g(α) ≥ g(1 − α) ≥ 0. Hence the inequality will
follow if we show that

5 + α− (5α+ 1) ≥ 0.

However, this is immediate when α ≤ 1, and completes the proof.

Proof of Lemma 2. By taking derivatives with respect to p, the above convexity is equivalent to showing that for p ∈ (0, 12 )

Ψ′′
β(p)Ψ

′
α(p)−Ψ′

β(p)Ψ
′′
α(p) ≤ 0. (9)

This is equivalent to showing that (lnΨ′
α(p))

′ is monotonically increasing with respect to α. Let U(α) := log2 α
1−α and t = 1−p

p .
Note that t > 1.

d
dα (lnΨ′

α(p))
′ ≥ 0 is equivalent to verifying

(U(α) + αU ′(α)− 1)
(pα−1 − (1− p)α−1)

(pα + (1− p)α)

+
(pα−2 + (1− p)α−2)

(pα−1 − (1− p)α−1)

≥
(
(1− α)

pα−2(1− p)α−2

(pα−1 − (1− p)α−1)2

+ (αU(α)− α)
pα−1(1− p)α−1

(pα + (1− p)α)2

)
ln

(
1− p

p

)
.
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This can rewritten as requiring to verify

(U(α) + αU ′(α)− 1)
(1− tα−1)

(1 + tα)
+

(1 + tα−2)

(1− tα−1)
(10)

≥ (1 + t) ln(t)

×
(
(1− α)

tα−2

(1− tα−1)2
+ (αU(α)− α)

tα−1

(1 + tα)2

)
.

Part (i) of 6 yields that

ln t1−α ≤ (t1−α − 1)(t2−2α + 10t1−α + 1)

6t1−α(t1−α + 1)
.

Therefore, it suffices to show that

(U(α) + αU ′(α)− 1)(1− tα−1)3(1 + tα)

+ (1− tα−1)(1 + tα)2(1 + tα−2)

≥
(
(1− α)tα−2(1 + tα)2 + (αU(α)− α)tα−1(1− tα−1)2

)
× (1 + t)

(t1−α − 1)(t2−2α + 10t1−α + 1)

6t1−α(t1−α + 1)(1− α)
.

Substituting for U(α) and rearranging, this is equivalent to showing that

(1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥
(
−α lnα

ln 2
− α(1− α)

)(
1− tα−1

1− α

)2

× (t2−α − 1 + 5t− 5t1−α)

+

(
lnα

ln 2
+

1

ln 2
+ 1− 2α

)
6(1− tα−1)

1− α

× (1 + tα)(1 + t1−α).

Note that − lnα
ln 2 ≥ (1− α) for α ∈ [ 12 , 1], and therefore it suffices to show that the following three inequalities hold:

1 ≥
(
−α lnα

ln 2
− α(1− α)

)
+

(
lnα

ln 2
+

1

ln 2
+ 1− 2α

)
,

(1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥
(
1− tα−1

1− α

)2

(t2−α − 1 + 5t− 5t1−α),

(1 + tα)2(1− 5t−1 + 5t1−α − t−α)

≥ 6(1− tα−1)

1− α
(1 + tα)(1 + t1−α).

These are established in Lemma 6 and this completes the proof.

C. Proof of Lemma 4

As before we begin with a similar lemma lemma.

Lemma 7. Let U(α) := log2 α
1−α , t > 1, and α ∈ (1, 2]. The following inequalities hold:

(i) (1− U(α)− αU ′(α))(α− 1) + 2− α ≥ (αU(α)− α),

(ii) t
α
2 (1 + tα) ≥ t

α
2 (1 + t) (t

α−1+1)
2 ,

(iii) (1+tα)2

2 ≥ t
α
2 (1 + t) (t

α−1+1)
2 .

(i) (1− U(α)− αU ′(α))(α− 1) + 2− α ≥ (αU(α)− α),

Proof. Expanding and simplifying this is equivalent to verifying that

1 + α+ α(1− α)U ′(α) ≥ U(α)(2α− 1).

Since (1− α)U(α) = log2 α, differentiating both sides we obtain

(1− α)U ′(α)− U(α) =
1

α ln 2
.
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Substituting this above, we need to show that

1 + α+ αU(α) +
1

ln 2
≥ U(α)(2α− 1),

or equivalently

1 + α+
1

ln 2
≥ U(α)(α− 1).

Note that U(α) < 0 for α > 1, and the left-hand-side is positive; so we are done.

(ii) t
α
2 (1 + tα) ≥ t

α
2 (1 + t) (t

α−1+1)
2 ,

Proof. This is equivalent to

2tα + 2 ≥ tα + t+ tα−1 + 1,

and can be simplified to

(t− 1)(tα−1 − 1) ≥ 0.

This holds when t ≥ 1 and α ≥ 1, as is the case here.

(iii) (1+tα)2

2 ≥ t
α
2 (1 + t) (t

α−1+1)
2 ,

Proof. This is equivalent to

t2α + 2tα + 1− t
α
2 − t

3α
2 −1 − t

3α
2 − t

α
2 +1 ≥ 0.

This can be rewritten as

(t
α
2 +1 − 1)(t

3α
2 − 1) ≥ (t

3α
4 − t

α
4 )2.

Since t
α
2 +1 ≥ tα as t > 1 and α ∈ (1, 2], it suffices to show that

(tα − 1)(t
3α
2 − 1) ≥ (t

3α
4 − t

α
4 )2.

Canceling (t
α
2 − 1) from both sides, this becomes equivalent to

(t
α
2 + 1)(t

3α
2 − 1) ≥ t

α
2 (t

α
2 − 1).

Expanding, we need to show that
t2α + t

3α
2 ≥ tα + 1.

However, this is immediate as t2α ≥ t
3α
2 ≥ tα ≥ 1, as t > 1 and α > 1.

Proof of Lemma 4. As in the proof of Lemma 2, with U(α) and t as defined earlier, convexity will follow (see 10) if we show
that the following inequality holds:

(U(α) + αU ′(α)− 1)
(1− tα−1)

(1 + tα)
+

(1 + tα−2)

(1− tα−1)

≥ (1 + t) ln t

×
(
(1− α)

tα−2

(1− tα−1)2
+ (αU(α)− α)

tα−1

(1 + tα)2

)
.

This can be rewritten as required to show that

(U(α) + αU ′(α)− 1)(1− tα−1)3(1 + tα)

+ (α− 1)tα−2(1 + tα)2(1 + t) ln t

≥ (tα−1 − 1)(1 + tα)2(1 + tα−2)

+ (αU(α)− α)tα−1(1− tα−1)2(1 + t) ln t.

Applying Remark 7 with a = α− 1 and b = 0 yields that tα−1 − 1 ≤ (α−1)(tα−1+1) ln t
2 . Using this estimate for the first term

on the right-hand-side, we see that it suffices to show that

(U(α) + αU ′(α)− 1)(1− tα−1)3(1 + tα)

+ (α− 1)tα−2(1 + tα)2(1 + t) ln t

≥ (α− 1)(tα−1 + 1) ln t

2
(1 + tα)2(1 + tα−2)

+ (αU(α)− α)tα−1(1− tα−1)2(1 + t) ln t.
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This can be rewritten as required to show

(1− U(α)− αU ′(α))(tα−1 − 1)2(1 + tα)

+
(α− 1) ln t(1 + tα)2

2
(1− tα−2)

≥ (αU(α)− α)tα−1(tα−1 − 1)(1 + t) ln t.

Now, we apply Remark 7 to obtain

(tα−1 − 1)2 > (α− 1)2tα−1(ln t)2

(set a = α− 1, b = 0),

1− tα−2 > t
α−2
2 (2− α) ln t

(set a = 0, b = α− 2),

tα−1 − 1 <
(α− 1)(tα−1 + 1) ln t

2
(set a = α− 1, b = 0).

Using the above inequalities, it suffices to show that

(1− U(α)− αU ′(α))(α− 1)2tα−1(ln t)2(1 + tα)

+
(α− 1)(1 + tα)2

2
(2− α)t

α−2
2 (ln t)2

≥ (αU(α)− α)tα−1(1 + t)
(α− 1)(tα−1 + 1)(ln t)2

2
.

This is equivalent to showing that

(1− U(α)− αU ′(α))(α− 1)t
α
2 (1 + tα) +

(1 + tα)2

2
(2− α)

≥ (αU(α)− α)t
α
2 (1 + t)

(tα−1 + 1)

2
.

It is easy to verify that 1−U(α)−αU ′(α) ≥ 0 for 1 < α ≤ 2. Therefore the above inequality follows as long as the following
three inequalities hold:

(1− U(α)− αU ′(α))(α− 1) + 2− α ≥ (αU(α)− α),

t
α
2 (1 + tα) ≥ t

α
2 (1 + t)

(tα−1 + 1)

2
,

(1 + tα)2

2
≥ t

α
2 (1 + t)

(tα−1 + 1)

2
.

These are established in Lemma 7 and this completes the proof.
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