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Abstract

The doubling-followed-by-rotation trick to prove the extremality of Gaussian distributions has become a valuable tool in
information theory. In particular, the above trick has been used to establish the Gaussian extremality of a family of inequalities
that unifies the Entropy Power Inequality and the Brascamp-Lieb inequalities. Here, we develop a technique (similar to the one in
the continuous case) to prove the extremality of Haar distributions for a similar family of inequalities in finite Abelian groups.

I. INTRODUCTION

A. Background

The Entropy Power Inequality (EPI) is a powerful tool that has found widespread applications in network information theory.
It has been widely used to show the capacity region (for instance [1], [2]) in several multiuser information theory settings.
Furthermore, various versions of this inequality have been formulated for discrete random variables. Shamai and Wyner, [3],
established a discrete analog of EPI for binary-valued random variables. Harremoës and Vignaet, [4], discovered a discrete
analog of EPI for a particular family of binomial random variables. Sharma, Das, and Muthukrishnan, [5] based on the work
of [4], established another version of the discrete EPI. On the other hand, there have been several attempts to generalization
Mrs. Gerber’s Lemma by Wyner and Ziv [6]; for example, Jog and Anantharam have shown a generalization of Mrs. Gerber’s
Lemma for random variables on an Abelian group with order 2n [7].

Definition 1 (Entropy Power). Suppose X is an Rn-valued random variable with a well-defined differential entropy h(X).
The entropy power of X is defined as

N (X) =
1

2πe
e2h(X)/n.

Theorem 1 (EPI [8], [9]). Suppose X and Y are independent Rn-valued random variables. Then

N (X) +N (Y ) ≤ N (X + Y ),

and the equality holds if and only if X and Y are Gaussians with proportional covariance matrices.

An equivalent dimension-independent form of the EPI was formulated by Lieb [10].

Theorem 2. Suppose X and Y are independent Rn-valued random variables. For any λ ∈ [0, 1], we have

h(
√
λX +

√
1− λY )− λh(X)− (1− λ)h(Y ) ≥ 0,

where the equality holds if and only if X and Y are Gaussians with identical covariance matrices.

In other words, the functional defined by

f(X,Y ) := h(
√
λX +

√
1− λY )− λh(X)− (1− λ)h(Y ),

where X and Y are independent random variables, is minimized by Gaussians with identical covariance matrices.
Similarly, the Brascamp-Lieb inequality (BLI) [11] is a family of functional inequalities at the intersection of information

and functional inequalities. Special cases of the BLI include Hölder’s inequality, the Loomis-Whitney inequality, and sharp
forms of Young’s convolution inequalities [12]. One of the central results here is that the optimal constants can be computed by
restricting to Gaussian distributions. Recently, in [13], the following theorem was proved that unified the family of Brascamp-
Lieb inequalities and the Entropy-Power inequality.

A conference version of this result will be presented at the 2024 IEEE International Symposium on Information Theory.
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Theorem 3 (Unified EPI and BLI, [13]). Let (A, c, r,d) be a BL-EPI datum. Define

Mg := sup
Z∈Pg(r)

k∑
i=1

dih(Zi)−
m∑
j=1

cjh(AjZ). (1)

Then for any X ∈ P(r), the following inequality holds:

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX) ≤ Mg. (2)

Remark 1. The readers are encouraged to look at [13] for a precise definition of BL-EPI datum and P(r). The main point is
that Pg(r) restricts the distributions in P(r) to Gaussian distributions, and Z’s are Gaussian random variables. For this paper,
it suffices to note that {di} and {cj} are positive constants, and X1, X2, . . . , Xk are mutually independent random vectors.
It is also worth noting that the same proof (of Gaussian extremality) goes through if one imposes covariance constraints,
E[XiX

T
i ] ⪯ Ki, on the independent random vectors.

The above inequality was proved using the doubling and rotation idea ( [14]), a technique that differs from the previous proof
methods of the EPI. Our main result (Theorem 6) is a discrete analog (in finite Abelian groups) of Theorem 3. Further, we
demonstrate that the proof technique in [13] can be essentially mimicked (modulo some differences in the technical arguments)
in this setting. The proof technique in [13] can be summarized (pushing some technical conditions under the carpet) as follows:
Gaussian optimality was deduced by demonstrating the sub-additivity of an entropic functional and by further using the proof
of the sub-additivity to show that rotated forms of the optimizers are independent. This implied that the optimizers must be
Gaussian by applying the Darmois-Skitovich theorem.

Theorem 4 (Darmois-Skitovich theorem [15], [16]). Let X1, . . . , Xn be independent random variables. Let α1, . . . , αn, β1, . . . , βn

be non-zero constants for each coordinate. If the linear statistics L1 =
∑n

i=1 αiXi and L2 =
∑n

i=1 βiXi are independent,
then all random variables X1, . . . , Xn are Gaussians.

The following finite Abelian group analog of the above result was discovered by Feldman [17].

Theorem 5 (Feldman [17]). Let G be a finite Abelian group, and X1, X2 be independent random variables with values in G. Let
α1, α2, β1, β2 be automorphisms of the group G. Then if the linear statistics L1 = α1(X1)+α2(X2) and L2 = β1(X1)+β2(X2)
are independent, then X1 and X2 are shifts of a Haar distribution of some subgroup H of G, or equivalently, X1 and X2 are
uniform distributions on a coset of some subgroup H of the group G.

Therefore, it is natural to guess that Gaussians can be replaced by uniform distributions on a coset of some subgroup
(or shifts of Haar distributions) when working in finite Abelian groups. However, while this intuition is correct, we show a
way to overcome some technical hassles (different from the continuous case) in our proof. Furthermore, just like the rotation
trick in the continuous case, we believe this argument can find several other applications to establish the optimality of Haar
distributions.

Notation: We use (G,+) or G to denote a finite Abelian group. We use |A| to denote the cardinality of a finite set A and
supp(pX) to denote the support of pX . For an additive group G and random variable X taking value in G, we define the
following: cX := X + · · ·+X (c times) for c ∈ Z+. If c = 0, then cX is the identity element; and when c ∈ Z−, then cX is
the additive inverse of |c|X .

II. MAIN

Theorem 6. Let X1, . . . , Xn be independent random variables taking values in subgroups H1, . . . ,Hn of a finite Abelian
group G, respectively. Let a1, . . . , an, and b1, . . . , bℓ be positive constants, and c

(1)
i,j , . . . , c

(mj)
i,j be integers. Then, the following

optimization problem

max∏n
i=1 pXi

n∑
i=1

aiH(Xi)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
,

has an optimizer (X∗
1 , . . . , X

∗
n), where X∗

i is uniformly distributed on a coset of a subgroup Ki ⊆ Hi.

Remark 2. The following points are worth noting:
1) One can relax the assumption on the sign of ai. Note that, if any ak ≤ 0, it is optimal to set the corresponding Xk to be

a constant random variable. To see this, observe that

H

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi,

)
≥ H

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|Xk

)
.
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2) Unlike the continuous case, where Lieb’s formulation of EPI was known, the extremality of the uniform distribution on
a coset of some subgroup for a1H(X1) + a2H(X2) −H(X1 +X2) was not known. There have been conjectures (and
some results), [7], of a similar flavor.

We establish the following lemma before providing proof of Theorem 6. This is the analogous result to the Darmois-
Skitovich theorem needed in our proof. We are unable to use Theorem 5 directly in our arguments. This lemma should also
be of independent interest.

Lemma 1. Let XA and XB be two independent random variables taking values in some finite Abelian group H. Let S =
supp(pXB

) and D denote the subgroup generated by pairwise differences of the elements of S. For XA+XB to be independent
of XB , it is necessary and sufficient that P(XA = h1) = P(XA = h2) whenever h1, h2 belong to the same coset of D (in
other words, pXA

is uniformly distributed conditioned on it taking values in a given coset of D). Consequently |supp(pXA
)| =

k|D| ≥ k|supp(pXB
)| for some k ∈ N satisfying 1 ≤ k ≤ |H|

|D| , and k = 1 only if XA is uniformly distributed on a coset of D.

Proof. First, assume that XA is uniform on the cosets of D. Let T be a transversal for D in H. Therefore, any element
h ∈ H can be uniquely represented as h = t + d, for some t ∈ T and d ∈ D. If XA is uniform on the cosets of D, then
P(XA = h) = P(XA = t + d) = 1

|D|PT (T = t) for some arbitrary distribution, PT , on the transversal. If XA and XB are
independent, note that P(XA +XB = h+ b,XB = b) = P(XA = h)P(XB = b) = 1

|D|P(T = t)P(XB = b).
On the other hand P(XA +XB = h+ b) =

∑
b̂∈S P(XA = h+ b− b̂)P(XB = b̂). Since b− b̂ ∈ D, h+ b− b̂ belongs to

the same coset as h. Therefore, for all b̂, we have P(XA = h+ b− b̂) = 1
|D|P(T = t). Consequently, P(XA +XB = h+ b) =

1
|D|P(T = t)

∑
b̂∈S P(XB = b̂) = 1

|D|P(T = t). Therefore P(XA + XB = h + b,XB = b) = P(XA = h)P(XB = b) =
1
|D|P(T = t)P(XB = b) = P(XA +XB = h+ b)P(XB = b). This implies that XA +XB is independent of XB , as desired.

Conversely, let us assume that XA and XB are independent, and additionally, XA+XB is also independent of XB . Therefore
P(XA + XB = h + b)P(XB = b) = P(XA + XB = h + b,XB = b) = P(XA = h)P(XB = b). This implies that for all
b ∈ S, we have P(XA = h) = P(XA + XB = h + b) =

∑
b̂∈S P(XA = h + b − b̂)P(XB = b̂). Rewriting h as h − b,

we see that P(XA = h − b) =
∑

b̂∈S P(XA = h − b̂)P(XB = b̂). Since the right-hand-side does not depend on b, we
obtain that P(XA = h − b1) = P(XA = h − b2), for all b1, b2 ∈ S and h ∈ H. Replacing h − b1 by h, we note that
P(XA = h) = P(XA = h+ b1 − b2). The pairwise differences bi − bj generate D, and from above pXA

is invariant under a
shift by a pairwise difference, it follows that pXA

is invariant under a shift by an element in D. In other words, XA is uniform
on the cosets of D.

Finally note that |supp(pXA
)| = |supp(pT )||D|, and |supp(pXA

)| = |D| only if T is a constant random variable, implying
that XA is uniform on a coset of D. We also have that |D| ≥ |supp(pXB

)|, since b 7→ b− b0 is an injection from supp(pXB
)

to D, where b0 is an arbitrary fixed element from supp(pXB
).

Remark 3. The proof is similar to that in [18, Section 5]. In [18], XA and XB are assumed to be identically distributed.

A. Proof of Theorem 6

The first step in proving the optimality of the uniform distribution of a coset of some subgroup is to identify a sub-additive
functional. To this end, given an n-tuple of distributions (pX1

, . . . , pXn
), such that Xi has support on Hi, let us define:

F (X1, . . . , Xn) := sup
pU|X1,...,Xn :
pX1,...,Xn|U
=
∏n

i=1 pXi|U

n∑
i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)
.

Observe that the maximum value of F (X1, . . . , Xn) is the same as the value of the optimization problem in Theorem 6, as the
average is always less than the maximum (the other direction is immediate by taking X1, . . . , Xn to be mutually independent
and U to be a constant).
Remark 4. This is essentially the same function as the one employed in [13].

Now consider an n-tuple of distributions (pX1,X̂1
, . . . , pXn,X̂n

), such that (Xi, X̂i) has support on Hi × Hi, let us define
(ignoring the abuse of notation):

F ((X1, X̂1), . . . , (Xn, X̂n)) := sup
pU|(X1,X̂1),...,(Xn,X̂n):
p(X1,X̂1),...,(Xn,X̂n)|U=∏n

i=1 p(Xi,X̂i)|U

n∑
i=1

aiH(Xi, X̂i|U)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi,

n∑
i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U

)
.
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Observe that
n∑

i=1

aiH(Xi, X̂i|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi,

n∑
i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U

)

=

n∑
i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)

+

n∑
i=1

aiH(X̂i|U,Xi)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U,

n∑
i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
(a)
=

n∑
i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)

+

n∑
i=1

aiH(X̂i|U,X)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U,

n∑
i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
(b)

≤
n∑

i=1

aiH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)

+

n∑
i=1

aiH(X̂i|U,X)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i|U,X

)
(c)

≤ F (X1, . . . , Xn) + F (X̂1, . . . , X̂n).

In the above X = (X1, . . . , Xn). Equality (a) follows, as conditioned on U , {(Xi, X̂i)} are mutually independent and equality
(b) follows from data-processing inequality as

(U,

n∑
i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi) → (U,X) → (U,

n∑
i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i)

is Markov. Finally inequality (c) follows since conditioned on U , the random variables {Xi} are mutually independent, and
conditioned on (U,X), the random variables {X̂i} are mutually independent.

In the next part of the proof, we will argue that certain linear forms of the maximizer are independent. To this end, consider
the two maximization problems listed below:

max∏n
i=1 pXi

n∑
i=1

aiH(Xi)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi

)
, (Optimization problem 1)

max∏n
i=1 pX̂i

n∑
i=1

aiH(X̂i)−
n∑

i=1

ϵH(X̂i)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂i, . . . ,

n∑
i=1

c
(mj)
i,j X̂i

)
. (Optimization problem 2)

In the above two problems, the random variables Xi and X̂i are assumed to take values in the subgroup Hi. Let (X∗
1 , . . . , X

∗
n)

and (X̂∗
1,ϵ, . . . , X̂

∗
n,ϵ) be maximizers of the two optimization problems respectively and V, Vϵ be the maximum value attained by

the two optimization problems. Further, let us assume that among all possible maximizers of the first problem, (X∗
1 , . . . , X

∗
n)

minimizes the function
∏n

i=1(1 + |supp(pXi
)|).

It is immediate that Vϵ → V and ϵ → 0 (as the difference between the objective functions at any point is bounded by
ϵ (
∑n

i=1 log |Hi|) . Furthermore, by the compactness of the probability simplex and continuity of the function, we know that
there is a sequence of maximizers (X̂∗

1,ϵm , . . . , X̂∗
n,ϵm) that converge to a maximizer of the first optimization problem.

Finally, we define

Fϵ(X1, . . . , Xn) := sup
pU|X1,...,Xn :

pX1,...,Xn|U=
∏n

i=1 pXi|U

n∑
i=1

aiH(Xi|U)−
n∑

i=1

ϵH(Xi|U)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j Xi, . . . ,

n∑
i=1

c
(mj)
i,j Xi|U

)
.

We have Fϵ(X1, . . . , Xn) ≤ Vϵ.
Observe that by taking independent copies of the maximizers (X∗

1 , . . . , X
∗
n) and (X̂∗

1,ϵ, . . . , X̂
∗
n,ϵ), we obtain

V + Vϵ

=

n∑
i=1

aiH(X∗
i )−

ℓ∑
j=1

bjH

(
n∑

i=1

c
(1)
i,j X

∗
i , . . . ,

n∑
i=1

c
(mj)
i,j X∗

i

)
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+

n∑
i=1

aiH(X̂∗
i,ϵ)−

n∑
i=1

ϵH(X̂∗
i,ϵ)−

ℓ∑
j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ

)
(a)
=

n∑
i=1

aiH(X∗
i , X̂

∗
i,ϵ)−

n∑
i=1

ϵH(X̂∗
i,ϵ)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X

∗
i , . . . ,

n∑
i=1

c
(mj)
i,j X∗

i ,

n∑
i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ

)
(b)
=

n∑
i=1

aiH(X∗
i + X̂∗

i,ϵ, X̂
∗
i,ϵ)−

n∑
i=1

ϵH(X̂∗
i,ϵ)

−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,

n∑
i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ),

n∑
i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ

)

=

n∑
i=1

aiH(X∗
i + X̂∗

i,ϵ)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,

n∑
i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ)

)

+

n∑
i=1

aiH(X̂∗
i,ϵ|X∗

i + X̂∗
i,ϵ)−

ℓ∑
j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ|
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,

n∑
i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ)

)

−
n∑

i=1

ϵH(X̂∗
i,ϵ|X∗

i + X̂∗
i,ϵ)−

n∑
i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ)

(c)

≤
n∑

i=1

aiH(X∗
i + X̂∗

i,ϵ)−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j (X

∗
i + X̂∗

i,ϵ), . . . ,

n∑
i=1

c
(mj)
i,j (X∗

i + X̂∗
i,ϵ)

)

+

n∑
i=1

aiH(X̂∗
i,ϵ|X∗ + X̂∗

ϵ )−
ℓ∑

j=1

bjH

(
n∑

i=1

c
(1)
i,j X̂

∗
i,ϵ, . . . ,

n∑
i=1

c
(mj)
i,j X̂∗

i,ϵ|X∗ + X̂∗
ϵ

)

−
n∑

i=1

ϵH(X̂∗
i,ϵ|X∗ + X̂∗

ϵ )−
n∑

i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ)

(d)

≤ F (X∗
1 + X̂∗

1,ϵ, . . . , X
∗
n + X̂∗

n,ϵ) + Fϵ(X̂
∗
1,ϵ, . . . , X̂

∗
n,ϵ)−

n∑
i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ)

(e)

≤ V + Vϵ −
n∑

i=1

ϵI(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ).

Here X∗+ X̂∗
ϵ stands for the vector (X∗

1 + X̂∗
1,ϵ, . . . , X

∗
n+ X̂∗

n,ϵ). In the above, equality (a) follows from the independence
of X∗ and X̂∗

ϵ and equality (b) follows from H(X1, X2) = H(X1 +X2, X2). Equality (c) follows from data-processing and
the independence of the components of (X∗ + X̂∗

ϵ ), and (d) follows from the definition of F and Fϵ as elaborated next. Note
that (X∗

1 + X̂∗
1,ϵ, . . . , X

∗
n + X̂∗

n,ϵ) satisfies the support constraints and is a valid input for the function F (with U taken to be
a constant). Now take U = X∗ + X̂∗

ϵ and use independence of the components of (X∗ + X̂∗
ϵ ) to justify that this choice is

a valid extension pU |X̂∗
ϵ

in the definition of Fϵ. Finally, we note that the maximum of F and Fϵ are V and Vϵ to justify the
inequality (e).

For ϵ > 0, note that the above manipulations imply that I(X̂∗
i,ϵ;X

∗
i + X̂∗

i,ϵ) = 0 using the non-negativity of mutual
information, or in other words, that X∗

i + X̂∗
i,ϵ is independent of X̂∗

i,ϵ. Since X∗
i was independent of X̂∗

i,ϵ by construction, note
that we can apply Lemma 1 to deduce that the distribution of X∗

i is uniform on the cosets of Di,ϵ. Here Di,ϵ is the subgroup of
Hi generated by the pairwise differences of the support of X̂∗

i,ϵ. Further |supp(pX∗
i
)| = ki,ϵ|Di,ϵ| for some ki,ϵ ∈ N satisfying

1 ≤ ki,ϵ ≤ |Hi|
|Di,ϵ| .

As argued earlier, we have a sequence of optimizers X̂∗
ϵm such that as ϵm ↓ 0 and X̂∗

ϵm converges to a maximizer, say X̃∗,
of the problem with ϵ = 0. Now, we have for any ϵ > 0,

n∏
i=1

(1 + ki,ϵ|Di,ϵ|) =
n∏

i=1

(1 + |supp(pX∗
i
)|)

(a)

≤
n∏

i=1

(1 + |supp(pX̃∗
i
)|)

(b)

≤ lim sup
m→∞

n∏
i=1

(1 + |supp(pX̂∗
i,ϵm

)|)
(c)

≤ lim sup
m→∞

n∏
i=1

(1 + |Di,ϵm |).
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Here (a) follows from the minimality of the choice of X∗, i.e. X∗ minimizes
∏n

i=1(1+|supp(pXi
)|) among all the maximizers

of the optimization problem. Inequality (b) follows from the observation that as X̂∗
i,ϵm

converges (weakly) to X̃∗
i , supp(pX̃∗

i
) ⊆

supp(pX̂∗
i,ϵm

) for sufficiently large m. Finally |Di,ϵm | ≥ |supp(pX̂∗
i,ϵm

)|, as argued earlier, since b 7→ b − b0 is an injection
from supp(pX̂∗

i,ϵm

) to D, where b0 is an arbitrary fixed element from supp(pX̂∗
i,ϵm

). Therefore for some large, enough m, have
ki,ϵm = 1 for all i, where 1 ≤ i ≤ m. Therefore, again invoking Lemma 1, we see that X∗

i is uniformly distributed on some
coset of a subgroup Di,ϵm ⊆ Hi. This completes the proof of Theorem 6.
Remark 5. Note that the above argument also establishes some properties of the maximizers of the optimization problem.
Suppose X∗

a is another maximizer such that
∏n

i=1(1 + |supp(pX∗
a,i
)|) >

∏n
i=1(1 + |supp(pX∗

i
)|). Then, the above argument

implies that one cannot have a sequence of maximizers of the perturbed problem that converges to X∗
a.

III. FUTURE AND RELATED WORK

An extension to torsion-free groups is certainly interesting. Along these lines, Tao proposed a conjecture [18] on the discrete
analog of EPI as below

Conjecture 1. Suppose X1, . . . Xn+1 are identically distributed and independent random variables on some torsion-free group
T. Then, for any ϵ > 0, as long as H(X) is sufficiently large (depending on n, ϵ), we have

H(X1 + · · ·+Xn+1) ≥ H(X1 + . . . Xn) +
1

2
log

n+ 1

n
− ϵ.

There is a recent proof of this conjecture, under the assumption that the distribution of X is log-concave, by Gavalakis [19].
Optimality of uniform distribution in a discrete setting for an information functional has recently been established by Gowers,

Green, Manners, and Tao [20]. There, they consider the following functional on a finite Abelian group, G, with characteristic
2.

Definition 2 (Polynomial Freiman-Ruzsa Functional). [20, Equation 2.1] For any random variables X0, Y 0 with support
contained inside G, a finite Abelian group with characteristic 2, define the functional

τ(X,Y ) :=

(
H(X − Y )− 1

2
H(X)− 1

2
H(Y )

)
+ η

(
H(X −X0)− 1

2
H(X)− 1

2
H(X0)

)
+ η

(
H(Y − Y 0)− 1

2
H(Y )− 1

2
H(Y 0)

)
,

where X,Y,X0, Y 0 are mutually independent. Here X,Y also take values in G.

It was shown in [20, Proposition 2.1] that all minimizers of τ(X,Y ) must be uniform distributions on a coset of a subgroup
for all X0, Y 0 with support in G, when η ≤ 1

9 .
Let us consider a slight modification of the above functional and define for a pair of distributions pX , pY

T (X,Y ) := min
pU|XY :

pXY |U=pX|UpY |U

H(X − Y |U)− 1

2
H(X|U)− 1

2
H(Y |U) + η

(
H(X −X0|U)− 1

2
H(X|U)− 1

2
H(X0|U)

)
+ η

(
H(Y − Y 0|U)− 1

2
H(Y |U)− 1

2
H(Y 0|U)

)
,

where the triple (U,X, Y ), X0, and Y 0 are mutually independent.
Define the two-letter form

T ((Xa, Xb), (Ya, Yb)) := min
pU|Xa,XbYaYb

:
pXaXbYaYb|U=pXaXb|UpYa,Yb|U

H(Xa − Ya, Xb − Yb|U)− 1

2
H(Xa, Xb|U)− 1

2
H(Ya, Yb|U)

+ η

(
H(Xa −X0

a , Xb −X0
b |U)− 1

2
H(Xa, Xb|U)− 1

2
H(X0

a , X
0
b |U)

)
+ η

(
H(Ya − Y 0

a , Yb − Y 0
b |U)− 1

2
H(Ya, Yb|U)− 1

2
H(Y 0

a , Y
0
b |U)

)
,

where the tuple (U, (Xa, Xb), (Ya, Yb)), X
0
a , X

0
b , Y

0
a , and Y 0

b are mutually independent.

Lemma 2. For any η ≥ 0, following super-additivity inequality holds:

T ((Xa, Xb), (Ya, Yb)) ≥ T (Xa, Ya) + T (Xb, Yb)

Proof. Observe that the following holds:

H(Xa − Ya, Xb − Yb|U)− 1

2
H(Xa, Xb|U)− 1

2
H(YaYb|U)
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= H(Xa − Ya|U)− 1

2
H(Xa|U)− 1

2
H(Ya|U) +H(Xb − Yb|U,Xa − Ya)−

1

2
H(Xb|U,Xa)−

1

2
H(Yb|U, Ya)

a
= H(Xa − Ya|U)− 1

2
H(Xa|U)− 1

2
H(Ya|U) +H(Xb − Yb|U,Xa − Ya)−

1

2
H(Xb|U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(Yb|U,Xa, Ya, X

0
a , Y

0
a )

≥ H(Xa − Ya|U)− 1

2
H(Xa|U)− 1

2
H(Ya|U) +H(Xb − Yb|U,Xa, Ya, X

0
a , Y

0
a ))−

1

2
H(Xb|U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(Yb|U,Xa, Ya, X

0
a , Y

0
a ).

Here (a) follows from the independence and the Markov structure of the random variables.
In an identical fashion, we can also show that

H(Xa −X0
a , Xb −X0

b |U)− 1

2
H(Xa, Xb|U)− 1

2
H(X0

a , X
0
b |U)

≥ H(Xa −X0
a |U)− 1

2
H(Xa|U)−H(X0

a |U) +H(Xb −X0
b |U,Xa, Ya, X

0
a , Y

0
a ))−

1

2
H(Xb|U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(X0

b |U,Xa, Ya, X
0
a , Y

0
a ),

and

H(Ya − Y 0
a , Yb − Y 0

b |U)− 1

2
H(Ya, Yb|U)− 1

2
H(Y 0

a , Y
0
b |U)

≥ H(Ya − Y 0
a |U)− 1

2
H(Ya|U)−H(Y 0

a |U) +H(Yb − Y 0
b |U,Xa, Ya, X

0
a , Y

0
a ))−

1

2
H(Yb|U,Xa, Ya, X

0
a , Y

0
a )

− 1

2
H(Y 0

b |U,Xa, Ya, X
0
a , Y

0
a ).

Denote Ua = U , and observe that pXaYa|Ua
= pXa|Ua

pYa|Ua
and (Ua, Xa, Ya), X

0
a , and Y 0

a are mutually independent.
Denote Ub = (U,U,Xa, Ya, X

0
a , Y

0
a ), and observe that pXbYb|Ub

= pXb|Ub
pYb|Ub

and (Ub, Xb, Yb), X
0
a , and Y 0

a are mutually
independent. Putting the above inequalities together, the requisite super-additivity follows.

However, we cannot do the transformation (Xa −X0
a , Xb −X0

b ) 7→ (Xa −X0
a +Xb −X0

b , Xb −X0
b ) as this would replace

X0
a by X0

a +X0
b . This is not permitted as X0

a is a fixed distribution. However, one can place Xa, Xb, YA, Yb at the minimizer
by alternate linear forms and use the minimality to force an independence of some linear forms. For η ≤ 1

9 (and when the
field has characteristic two), the authors can deduce such independence of the linear forms and prove the optimality of the
uniform distribution.
Remark 6. The argument presented above is slightly different from what is presented by the authors, but the difference is
mainly superficial.
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