
ON THE CAPACITY REGION OF SOME CLASSES OF INTERFERENCE CHANNELS

Abstract. In this paper, we provide a new outer bound to the capacity region of the Gaussian Z-interference
channel and also characterize the capacity of two new classes of discrete memoryless interference channels. The

latter is achieved by proving the optimality of the Han-Kobayashi inner bound via traditional converse proofs.

However, our outer bound for the Gaussian Z-interference channel is derived based on a novel observation.
The conventional Gallager-type infeasibility proof identifies auxiliary random variables as the past/future of the

channel random variables. Once an outer bound is established, it is important to establish a bound on the size

of the alphabet of the auxiliary random variables to make the bound computable and meaningful. However, in
the absence of cardinality bounds, we highlight that for Gaussian noise channels, if one can demonstrate the

optimality of jointly Gaussian input distributions, such upper bounds become valuable. We demonstrate this

point by utilizing an outer bound that is generally not computable for discrete interference channels to derive
a new outer bound for Gaussian Z-interference channels.

1. Introduction

In this paper, we consider the two-sender-two-receiver interference channel model illustrated in Figure 1.
Each sender wishes to transmit a message to its respective receiver via a shared medium. This channel models
communication in two nearby cells in a wireless system. An (n,R1, R2) code C, for the interference channel,
consists of

• two message sets [1 : 2nR1 ] := {1, 2, ..., ⌊2nR1⌋} and [1 : 2nR2 ] := {1, 2, ..., ⌊2nR2⌋},
• two encoder functions [1 : 2nRi ] → Xn

i , i ∈ {1, 2} mapping each message mi to a codeword xn
i , and

• two decoder functions Yn
i → [1 : 2nRi ], i ∈ {1, 2} mapping a codeword yni to a message estimate, m̂i.

Assume that the messages (M1,M2) are uniformly distributed over [1 : 2nR1 ]×[1 : 2nR2 ]. The average probability
error is defined to be

P (n)
e = Pr((M̂1, M̂2) ̸= (M1,M2)).

In the traditional vanishing error setting, a rate pair (R1, R2) is achievable if there is a sequence of (n,R1, R2)

codes such that P
(n)
e → 0 as n → ∞. Consider the region of achievable (R1, R2) rate-pairs. The closure of this

achievable region is defined to be the capacity region C . The reader can refer to [1, Chapter 6] for an overview
of interference channels.

The capacity region is not known in general. The best known inner bound to the capacity region is the
Han-Kobayashi inner bound.
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Theorem 1 (Han-Kobayashi inner bound). Han-Kobayashi inner bound says that the following region is achiev-
able for any p(q, u1, u2, x1, x2) = p(q)p(u1, x1|q)p(u2, x2|q):

R1 < I(X1;Y1|U2, Q),

R2 < I(X2;Y2|U1, Q),

R1 +R2 < I(X1, U2;Y1|Q) + I(X2;Y2|U1, U2, Q),

R1 +R2 < I(X2, U1;Y2|Q) + I(X1;Y1|U1, U2, Q),

R1 +R2 < I(X1, U2;Y1|U1, Q) + I(X2, U1;Y2|U2, Q),

2R1 +R2 < I(X1, U2;Y1|Q) + I(X1;Y1|U1, U2, Q) + I(X2, U1;Y2|U2, Q),

R1 + 2R2 < I(X2, U1;Y2|Q) + I(X2;Y2|U1, U2, Q) + I(X1, U2;Y1|U1, Q).

(1)

Moreover, the following cardinality bounds on the auxiliary random variables can be imposed: |U1| ≤ |X1| + 4,
|U2| ≤ |X2|+ 4 and |Q| ≤ 6.

In general, the Han-Kobayashi inner bound is not equal to the capacity region. However, for certain special
classes of interference channels, the Han-Kobayashi inner bound can indeed be optimal. One interesting case
is the Gaussian Z-interference channels, where it remains an open question whether the Han-Kobayashi inner
bound is tight. The current state-of-the-art outer bound does not match the Han-Kobayashi inner bound. In
Section 2, we tighten the gap between the inner and outer bounds by providing a new outer bound. Our key
observation is as follows: In the traditional Gallager-style infeasibility proof, it is common to identify auxiliary
random variables as either the past or future (or both) of the channel random variables. After establishing an
outer bound, it becomes essential to check if one can prove bounds on the size of the alphabet for the auxiliary
random variables.1 This step is necessary to ensure that the bound is computable. Without cardinality bounds,
the outer bound region has no utility for discrete channels. To demonstrate the cardinality bounds on the
auxiliary random variables, the Caratheodory-Bunt theorem is commonly employed. However, the effectiveness
of this theorem is heavily contingent on the specific structure of the mutual information terms that manifest
within the expression. The key idea of this paper is that outer bounds without cardinality bounds might be
useful in Gaussian noise channels, even though they are not useful in discrete channels. This is because we
possess alternative techniques that establish the optimality of jointly Gaussian random variables, which operate
independently of the Caratheodory-Bunt theorem. Our example illustrates this point.

Finally, in Section 3 we show that the Han-Kobayashi inner bound is tight for two new classes of interference
channels, including interference channels with strong interference at one receiver and injective deterministic
function at the other.

2. Gaussian Z-interference

Consider the two-user Z-Gaussian interference channel:

Y1 = X1 + Z1

Y2 = aX1 +X2 + Z2 ,
(2)

with a ∈ (0, 1), Zi ∼ N (0, 1) and a power constraint on the n-letter codebooks:

∥Xn
1 ∥2 ≤ nP1, ∥Xn

2 ∥2 ≤ nP2. (3)

See Figure 2 for an illustration. If a ≥ 1, the capacity region is fully known [2], [3] (strong interference regime).
The capacity region is unknown when 0 < a < 1 which corresponds to the weak interference regime.

An outer bound on the Z-interference channel was proven in [4]. The bound uses an auxiliary receiver J .
We report the bound here for the choice of J = Y1 as the simulation results in [4] indicate that the choice of
J = Y1 is optimal when we restrict to the Gaussian Z-interference channel.

1If computability were not a concern, one could write bounds with many auxiliary random variables, such as one for the past

or future of each channel variable, and impose all possible relations between these auxiliary random variables that arise from rate
constraints or the Csiszar sum lemma.
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Figure 2. Illustration of a Gaussian Z-interference channel.

Theorem 2. Consider the Z-interference channel pY1Y2|X1X2
= pY1|X1

pY2|Y1,X2
. Then, any rate pair (R1, R2)

in the capacity of the Z-interference channel must satisfy the following constraints,

R1 ≤ min{I(X1;Y1|Q), I(S;Y2|Q) + I(X1;Y1|S,Q)}
R2 ≤ min{I(X2;Y2|S,X1, Q), I(X2;Y2|S,Q)− I(X2;Y1|S,Q)}

for some auxiliary random variables S and Q satisfying p(q)p(x1|q)p(x2|q)p(s|x1, x2, q) and

I(X1;Y1|S,Q) ≥ I(X1;Y2|S,Q).

The proof uses the following choice for the auxiliary random variable:

Si = (Y i−1
2 , Y n

1,i+1).

In the following, we first state an outer bound for any arbitrary Z-interference channel. This upper bound
is not computable since it provides no cardinality bound on its auxiliary random variables. However, we show
later that for the Gaussian z-interference channel, the auxiliary random variables can be assumed to be jointly
Gaussian and the outer bound becomes useful.

The following outer bound involves a receiver T . To understand the intuition for this receiver, observe that
for the Gaussian interference channel given in (2), we can define T = X2 +Z2. Then, Y2 = aX1 + T implies an
injective deterministic situation, i.e. T = g(Y2, X1), Y2 = f(T,X1).

Theorem 3. Take an arbitrary Z-interference channel p(y1|x1)p(y2|x1, x2) such that

I(A;Y2|X2) ≤ I(A;Y1|X2)

for any p(a, x1, x2)p(y1, y2|x1, x2), i.e., Y2 is less noisy than Y1 conditioned on X2.
Consider an auxiliary receiver T such that p(y1, y2, t|x1, x2) = p(y1|x1)p(t|x2)p(y2|t, x1) and moreover H(T |Y2, X1) =

H(Y2|T,X1) = 0. Then, for every ϵ > 0, the following bound holds:

R1 ≤ ϵ+ I(X1;Y1|U,Q)

R2 ≤ ϵ+ I(X2;T |V,Q)

for some p(q, u, v, w, x1, x2) satisfying

p(q, u, v, w, x1, x2) = p(v, x2|q)p(u, x1|q)p(w|v, u, x1, q) (4)

and the constraints:

I(W ;Y1|U,Q) = I(U ;Y2|W,Q)

I(V,W ;Y1|U,Q) = I(U ;T, Y2|V,W,Q)

I(X1;Y1|U,W,Q) ≥ I(X1;Y2|U,W,Q).

I(X2;T |V,Q) ≤ I(X2;Y2|U,W,Q)− I(X2;Y1|U,W,Q) + ϵ.
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Remark 1. We cannot set ϵ = 0 in the statement of the above bound (even for finite alphabet channels) because
we cannot use the existing techniques to prove cardinality bounds on the alphabet of the auxiliary random
variables.

Proof. Take a code of length n with input sequences Xn
1 = E1(M1) and Xn

2 = E2(M2). One can prove the above
theorem by identifying the auxiliary variable

Ui = Y n
1,i+1,

Vi = T i−1,

Wi = Y i−1
2 .

Let Q ∈ [1 : n] be a time-sharing random variable, and let U = (UQ, Q), V = (VQ, Q), and W = (WQ, Q).
Observe that by Fano’s inequality we have n(R1 − ϵn) ≤ I(M1;Y

n
1 ) ≤ I(Xn

1 ;Y
n
1 ) and n(R2 − ϵn) ≤

I(M2;Y
n
2 ) ≤ I(Xn

2 ;Y
n
2 ) for some ϵn that tends to zero as n tends to infinity. Now, observe that

I(Xn
1 ;Y

n
1 ) =

∑
i

I(Xn
1 ;Y1i|Y i−1

1 ) =
∑
i

I(X1i;Y1i|Y i−1
1 )

and the first bound R1 ≤ ϵ+ I(X1;Y1|U,Q) follows. The second inequality R2 ≤ ϵ+ I(X2;T |V,Q) follows from

I(Xn
2 ;Y

n
2 ) ≤ I(Xn

2 ;Y
n
2 |Xn

1 )

= I(Xn
2 ;T

n|Xn
1 )

= I(Xn
2 ;T

n)

=
∑
i

I(X2i;Ti|T i−1)

= nI(X2Q;TQ|V,Q).

Next, we have

nI(X2Q;TQ|V,Q) = I(Xn
2 ;Y

n
2 |Xn

1 ) (5)

= I(Xn
2 ;Y

n
2 ) + I(Xn

2 ;X
n
1 |Y n

2 ) (6)

= I(Xn
2 ;Y

n
2 )− I(Xn

2 ;Y
n
1 ) + I(Xn

2 ;X
n
1 |Y n

2 ) (7)

=
∑
i

I(Xn
2 ;Y2i|Y n

1,i+1Y
i−1
2 )− I(Xn

2 ;Y1i|Y n
1,i+1Y

i−1
2 ) + I(Xn

2 ;X
n
1 |Y n

2 ) (8)

=
∑
i

I(X2i;Y2i|Y n
1,i+1Y

i−1
2 )− I(X2i;Y1i|Y n

1,i+1Y
i−1
2 ) + I(Xn

2 ;X
n
1 |Y n

2 )

+
∑
i

I(Xn
2 ;Y2i|X2iY

n
1,i+1Y

i−1
2 )− I(Xn

2 ;Y1i|X2iY
n
1,i+1Y

i−1
2 ) (9)

≤
∑
i

I(X2i;Y2i|Y n
1,i+1Y

i−1
2 )− I(X2i;Y1i|Y n

1,i+1Y
i−1
2 ) + I(Xn

2 ;X
n
1 |Y n

2 ) (10)

≤
∑
i

I(X2i;Y2i|Wi, Ui)− I(X2i;Y1i|Wi, Ui) + nϵn (11)

where (10) follows from the less noisy property conditioned on X2.
Since p(y1, t|x1, x2) = p(y1|x1)p(t|x2), I(X

n
1 ;X

n
2 ) = 0 and H(Y2|T,X1) = 0, we obtain the Markov chain

conditions in (4).
The constraints

I(W ;Y1|U,Q) = I(U ;Y2|W,Q),

I(V,W ;Y1|U,Q) = I(U ;T, Y2|V,W,Q)

follow from the Csiszar-sum identity.
□
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Next, we have the following result for Gaussian noise channels. Note that a natural way to characterize a
convex region R is via its supporting hyperplanes, or equivalently via weighted-sum-rates. The weighted-sum-
rate is defined as

sup{R1 + λR2 : (R1, R2) ∈ R}
where λ ≥ 0.

Theorem 4. Take the Gaussian interference channel given in (2). Assume that 0 < a < 1. Define T = X2+Z2.
Then, for any achievable rate pair (R1, R2) and λ ≥ 1, we have

R1 + λR2 ≤ I(X1;Y1|U) + λI(X2;T |V )

for some distribution pU,V,W,X1,X2
such that

p(u, v, w, x1, x2) = p(v, x2)p(u, x1)p(w|v, u, x1) (12)

and pX1|U , pX2|V , pX1,X2|W , pX1,X2|U,W , pX1,X2|U,V,W are all conditional Gaussian distributions whose variances
(or covariances) do not depend on the conditioned variables (e.g., the variance of X1 given U = u does not
depend on u); moreover, the following constraints are satisfied:

I(W ;Y1|U) = I(U ;Y2|W ), (13)

I(V,W ;Y1|U) = I(U ;T, Y2|V,W ), (14)

I(X1;Y1|U,W ) ≥ I(X1;Y2|U,W ), (15)

I(X2;T |V ) ≤ I(X2;Y2|U,W )− I(X2;Y1|U,W ), (16)

hold. Further X1 and X2 are assumed to satisfy the power constraints, i.e. EX2
1 ≤ P1 and EX2

2 ≤ P2.

Remark 2. Let KV , KU , KU,W KU,V,W to be 2 × 2 the covariance matrix of X1, X2 given V , U , (U,W ) and
(U, V,W ) respectively. Then, all the mutual information terms can be computed in terms of these covariance
matrices, indicating that the outer bound is now in a computable and compact form. To evaluate the bound,
one has to take the union over all feasible covariance matrices. Besides the constraints like KU,W ⪯ KU

coming from Jensen’s inequality, the Markov structure imposes further some constraints on KV , KU , KU,W

KU,V,W . For instance, KV , KU are diagonal matrices. We also know that var(X2|V ) = var(X2|U,W, V,X1) ≤
var(X2|U,W,X1).

Remark 3. The above theorem only considers λ ≥ 1 because for λ = 1, the sum rate is known to be optimized
at Sato’s corner point, [2, 5]. Further, for any λ ∈ (0, 1], the supporting hyperplane to the capacity region also
passes through Sato’s corner point.

Proof. We utilize the ideas in [6] to deduce the Gaussian extremality. First, let us consider the optimization
problem induced by Theorem 3. That is, we want to maximize I(X1;Y1|U,Q)+λI(X2;T |V,Q) over distributions
of the form

p(q, u, v, w, x1, x2) = p(v, x2|q)p(u, x1|q)p(w|v, u, x1, q), (17)

satisfying the power constraints, i.e. EX2
1 ≤ P1 and EX2

2 ≤ P2 and satisfying the following constraints:

I(W ;Y1|U,Q) = I(U ;Y2|W,Q)

I(V,W ;Y1|U,Q) = I(U ;T, Y2|V,W,Q)

I(X1;Y1|U,W,Q) ≥ I(X1;Y2|U,W,Q).

I(X2;T |V,Q) ≤ I(X2;Y2|U,W,Q)− I(X2;Y1|U,W,Q) + ϵ.

It suffices to show that conditional Gaussian distributions maximize the outer bound in Theorem 3 for every
ϵ > 0. We can then let ϵ converge to zero and get the bound stated in the theorem. The random variable Q
can be dropped at the very end as I(X1;Y1|U,Q = q) will not depend on the value of q. Therefore, we can just
consider the conditional distribution of all random variables given some Q = q.

We utilize the ideas in [6]. Gaussian optimality using these ideas requires the following components: the
existence of a maximizer, a sub-additive function (that is additive for independent distributions and invariant
under rotations), and equality in the sub-additivity holds only if the distributions are independent.
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To show the existence of a maximizer, we use Prokhorov’s theorem. We refer the reader to the arguments in
Appendix II of [6] as the arguments are standard. To use Prokhorov’s theorem, one needs to show the tightness
of the distributions (for subsequential convergence) and continuity of differential entropy. To justify tightness in
our problem, we note that without loss of generality, we can assume that random variables Q,U, V,W all take
values in the compact set [0, 1] (to see this, note that we can replace U with f(U) where f(·) is the one-to-one
mapping f(x) = 1

1+ex . None of the mutual information terms will be affected by this transformation). We also
have power constraints on X1, X2. This will yield the requisite tightness condition on a sequence of distributions
using Prokhorov’s theorem. The additive Gaussian noise yields the requisite continuity of differential entropy.
Together, we get the existence of maximizing distributions.

The key component is the second part, i.e., identifying the sub-additive function. Intuitively speaking, the
outer bound derivations already provide such a sub-additivity argument. We provide the details here:

Take (X∗
11, X

∗
21, Q

∗
1, U

∗
1 , V

∗
1 ,W

∗
1 ) and (X∗

12, X
∗
22, Q

∗
2, U

∗
2 , V

∗
2 ,W

∗
2 ) to be two independent copies of a maximizer

p∗(x1, x2, q, u, v, w) of the optimization problem of Theorem 3 with the objective function

I(X1;Y1|U,Q) + λI(X2;T |V,Q),

subject to the constraints in the theorem. Further, let Vλ denote the optimal value. Let

(Q̂, Û , V̂ , Ŵ ) := ((Q∗
1, Q

∗
2), (U

∗
1 , U

∗
2 ), (V

∗
1 , V

∗
2 ), (W

∗
1 ,W

∗
2 ))

and (
X1+

X1−

)
:=

( √
t

√
1− t

−
√
1− t

√
t

)(
X∗

11

X∗
12

)
,

(
X2+

X2−

)
:=

( √
t

√
1− t

−
√
1− t

√
t

)(
X∗

21

X∗
22

)
.

where t = 1
2 . We define channel outputs Y1+, Y1−, T+, T−, Y2+, Y2− in the standard manner as in [6].

Set

Û− := (Û , Y1+) Û+ := Û , (18)

V̂− := V̂ V̂+ := (V̂ , T−) (19)

Ŵ− := Ŵ Ŵ+ := (Ŵ , Y2−) (20)

Since rotations preserve mutual information, note that standard manipulations yield

2V = I(X1+X1−;Y1+Y1−|Û , Q̂) + λI(X2+X2−;T+T−|V̂ , Q̂)

= I(X1+;Y1+|Û , Q̂) + λI(X2+;T+|V̂ , T−, Q̂)

+ I(X1−;Y1−|Û , Y1+Q̂) + λI(X2−;T−|V̂ , Q̂).

Now consider a joint distribution of the form p∗(s, q, u, v, w, x1, x2) where S takes values in {+,−} with uniform
probability. Conditioned on S = +, the rest of random variables are distributed according to PQ̂,Û+,V̂+,Ŵ+,X1+,X2+

;

similarly, conditioned on S = −, the rest are distributed according to PQ̂,Û−,V̂−,Ŵ−,X1−,X2−
.

The following equations (or inequations) can be directly verified, showing that p∗S,Q,U,V,W,X1,X2
is another

maximizer of Theorem 3:

I(X1+X1−;Y1+Y1−|Û , Q̂) = I(X1+;Y1+|Û+, Q̂) + I(X1−;Y1−|Û−, Q̂),

I(X2+X2−;T+T−|V̂ , Q̂) = I(X2+;T+|V̂+, Q̂) + I(X2−;T−|V̂−, Q̂),

I(Ŵ ;Y1+Y1−|Û , Q̂)− I(Û ;Y2+Y2−|Ŵ , Q̂) = I(Ŵ+;Y1+|Û+, Q̂)− I(Û+;Y2+|Ŵ+, Q̂)

+ I(Ŵ−;Y1−|Û−, Q̂)− I(Û−;Y2−|Ŵ−, Q̂),

I(V̂ , Ŵ ;Y1+, Y1−|Û , Q̂)− I(Û ;T+, Y2+, T−, Y2−|V̂ , Ŵ , Q̂) = I(V̂+, Ŵ+;Y1+|Û+, Q̂)− I(Û+;T+, Y2+|V̂+, Ŵ+, Q̂)

+ I(V̂−, Ŵ−;Y1−|Û−, Q̂)− I(Û−;T−, Y2−|V̂−, Ŵ−, Q̂).



ON THE CAPACITY REGION OF SOME CLASSES OF INTERFERENCE CHANNELS 7

Next, we have

0 ≤ I(X1+X1−;Y1+Y1−|Û , Ŵ , Q̂)− I(X1+X1−;Y2+Y2−|Û , Ŵ , Q̂)

= I(X1+X1−;Y1+|Û+, Ŵ+, Q̂)− I(X1+X1−;Y2+|Û+, Ŵ+, Q̂)

+ I(X1+X1−;Y1−|Û−, Ŵ−, Q̂)− I(X1+X1−;Y2−|Û−, Ŵ−, Q̂)

= I(X1+;Y1+|Û+, Ŵ+, Q̂)− I(X1+X1−;Y2+|Û+, Ŵ+, Q̂) (21)

+ I(X1−;Y1−|Û−, Ŵ−, Q̂)− I(X1+X1−;Y2−|Û−, Ŵ−, Q̂) (22)

≤ I(X1+;Y1+|Û+, Ŵ+, Q̂)− I(X1+;Y2+|Û+, Ŵ+, Q̂)

+ I(X1−;Y1−|Û−, Ŵ−, Q̂)− I(X1−;Y2−|Û−, Ŵ−, Q̂).

where in (21) and (22) we use the fact that Y1 depends only on X1.
We have the constraint

I(X2+X2−;T+T−|V̂ , Q̂) ≤ I(X2+X2−;Y2+Y2−|Û , Ŵ , Q̂)− I(X2+X2−;Y1+Y1−|Û , Ŵ , Q̂).

On the one hand,

I(X2+X2−;T+T−|V̂ , Q̂) = I(X2+;T+|V̂+, Q̂) + I(X2−;T−|V̂−, Q̂)

and on the other hand we have

I(X2+X2−;Y2+Y2−|Û , Ŵ , Q̂)− I(X2+X2−;Y1+Y1−|Û , Ŵ , Q̂)

= I(X2+X2−;Y2+|Û+, Ŵ+, Q̂)− I(X2+X2−;Y1+|Û+, Ŵ+, Q̂)

+ I(X2+X2−;Y2−|Û−, Ŵ−, Q̂)− I(X2+X2−;Y1−|Û−, Ŵ−, Q̂)

= I(X2+;Y2+|Û+, Ŵ+, Q̂)− I(X2+;Y1+|Û+, Ŵ+, Q̂)

+ I(X2−;Y2−|Û−, Ŵ−, Q̂)− I(X2−;Y1−|Û−, Ŵ−, Q̂)

+ I(X2−;Y2+|X2+, Û+, Ŵ+, Q̂)− I(X2−;Y1+|X2+, Û+, Ŵ+, Q̂)

+ I(X2+;Y2−|X2−, Û−, Ŵ−, Q̂)− I(X2+;Y1−|X2−, Û−, Ŵ−, Q̂)

≤ I(X2+;Y2+|Û+, Ŵ+, Q̂)− I(X2+;Y1+|Û+, Ŵ+, Q̂) (23)

+ I(X2−;Y2−|Û−, Ŵ−, Q̂)− I(X2−;Y1−|Û−, Ŵ−, Q̂) (24)

where (23) and (24) follow from the less noisy property conditioned on X2.
Intuitively, one can see the Gaussian optimality as X1+, X1− edge closer to Gaussian by the Central limit

theorem. However, it turns out to be easier to invoke the Darmois-Skitovic theorem as shown in [6].

Theorem 5 (Darmois-Skitovich theorem [7,8]). Let X1, . . . , Xn be independent random variables. Further, let
α1, . . . , αn, β1, . . . , βn be non-zero constants for each coordinate. If the linear statistics L1 =

∑n
i=1 αiXi and

L2 =
∑n

i=1 βiXi are independent, then all random variables X1, . . . , Xn are Gaussians.

Therefore, the third component of the technique in [6] is to show the independence of the rotated forms.
Sometimes, one gets this directly via the proof of sub-additivity as in [6], or at other times one has to modify the
sub-additive functional by a small amount to induce this independence (as illustrated in [4]). Here, we use the
latter approach and add some small perturbation terms to our objective function I(X1;Y1|U,Q)+λI(X2;T |V,Q).

The choice of the identification of the auxiliaries guide the design of the perturbative terms. It suffices to
show that at the maximizer pX1|U , pX2|V , pX1,X2|W , pX1,X2|U,W , pX1,X2|U,V,W are all Gaussians whose variances
(or covariances) do not depend on the conditioned variables. To show each of the following, we perturb our
subadditive function appropriately using functions uniformly bounded by say δ, and conclude the Gaussians
optimize these perturbed functions. Then, we let δ → 0 to deduce the Gaussian optimality for the original
function.

Below, we outline the concept behind the construction of the perturbation terms. Consider the term

I(X1;Y
†
1 |U), where Y †

1 is a degraded version (by the addition of Gaussian noise) of Y1. Now observe that
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subadditivity for this term proceeds as follows:

I(X1, X2;Y
†
11, Y

†
12|U1, U2) = I(X1+, X1−;Y

†
1+, Y

†
1−|Û)

= I(X1+;Y
†
1+|Û) + I(X1−;Y

†
1−|Û , Y †

1+)

= I(X1+;Y
†
1+|Û) + I(X1−;Y

†
1−|Û , Y1+) + I(Y1+;Y

†
1−|Û , Y †

1+)

= I(X1+;Y
†
1+|Û+) + I(X1−;Y

†
1−|Û−) + I(Y1+;Y

†
1−|Û , Y †

1+)

Assume that we add −δ1I(X1;Y
†
1 |U) to our original function

I(X1;Y1|U,Q) + λI(X2;T |V,Q)− δ1I(X1;Y
†
1 |U),

If we take the product of two maximizers, then the rotated versions will also be a maximizer and will strictly

improve unless I(Y1+;Y
†
1−|Û , Y †

1+) = 0. Note, by the degraded structure, we also have I(Y †
1+;Y

†
1−|Û , Y1+) = 0,

implying double Markovity and hence (see [4] for details of such arguments) Y1− is independent of (Y †
1+, Y1+),

conditioned on U , and hence that X1+, X1− are also independent conditioned on U . Then by applying Theorem
5, we have that, at the maximizer, pX1|U is a Gaussian. Further, we also know that the variance does not depend
on U (see Corollary 3 in [6].)

By considering the term I(X2;T
†|V ), where T † is a degraded (by independent Gaussian noise) version of T2,

and doing the same operations as above, we can deduce that pX2|V is Gaussian with a covariance that does not

depend on V . The excess term we obtain from the subadditivity proof is I(T−;T
†
2+|V̂ , T−) in this case.

Simiarly, by considering the term I(X1, X2;Y
†
2 |W ), where Y †

2 is a degraded (by independent Gaussian noise)
version of Y2, and doing the same operations as above, we can deduce that pX1,X2|W is Gaussian with a

covariance that does not depend on W . The excess term we obtain here is I(Y2−;Y
†
2+|Ŵ , Y2−)

Now consider the term I(X1, X2;Y1|U,W ) − µI(X1, X2;Y1|U,W ), for some fixed µ satisfying µ > 1. Per-
forming similar manipulations as before, we obtain an excess term (µ− 1)I(Y1+;Y2−|U,W ). This being zero at
maximizer forces pX1,X2|U,W to be Gaussian with a covariance that does not depend on U,W .

Finally, consider the term I(X1, X2;T, Y2|U,W, V )−µI(X1, X2;Y1|U,W, V ) , for some fixed µ satisfying µ > 1.
Again, performing similar manipulations as before, we obtain an excess term (µ − 1)I(Y1+;T−, Y2−|U, V,W ).
This being zero at maximizer forces pX1,X2|U,V,W to be Gaussian with a covariance that does not depend on
U, V,W .

□

2.1. Comparison of the outer bounds. We show that the bound in Theorem 4 is less than or equal to the
bound in Theorem 2. To show this, it suffices to show that for any λ ≥ 1, the bound on the λ-sum rate in
Theorem 4 is less than or equal to that in Theorem 2.

Take a point in the bound in Theorem 4. Corresponding to the point are auxiliary random variables U, V,W
yielding the upper bound on the λ-sum rate. We show that R1 = I(X1;Y1|U) and R2 = I(X2;T |V ) belongs to
the region in Theorem 2 and can be obtained via the auxiliary random variable S = (U,W ) and constant Q.

First, consider the bounds on R1 in Theorem 2: it is immediate that

I(X1;Y1|U) ≤ I(X1;Y1).

We also claim that

I(X1;Y1|U) ≤ I(U,W ;Y2) + I(X1;Y1|U,W )

which shows that R1 will be satisfied for S = (U,W ). Using the fact that I(W ;Y1|U) = I(U ;Y2|W ), we can
write

I(U,W ;Y2) + I(X1;Y1|U,W ) = I(W ;Y2) + I(W ;Y1|U) + I(X1;Y1|U,W )

= I(W ;Y2) + I(W,X1;Y1|U)

≥ I(X1;Y1|U). (25)

Next, consider the bounds on R2: since

I(X2;T |V ) ≤ I(X2;Y2|U,W )− I(X2;Y1|U,W ),
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the second inequality on R2 in Theorem 2 is satisfied with the auxiliary random variable S = (U,W ) and
constant Q. It remains to show that

I(X2;T |V ) ≤ I(X2;Y2|U,W,X1).

Since (X2, T ) → V → (U,W,X1) forms a Markov chain, we can write

I(X2;T |V ) = I(X2;T |V,U,W,X1) (26)

= I(X2;Y2|V,U,W,X1) (27)

≤ I(V,X2;Y2|U,W,X1) (28)

= I(X2;Y2|U,W,X1). (29)

Figure 3. Comparison of the bounds when a = 0.8, P1 = 1, P2 = 1. The green curve is the
Han-Kobayashi inner bound. The red curve is a relaxed version of the bound in Theorem 4,
and the blue curve is the one obtained by Theorem 2.

3. The capacity of two classes of discrete interference channels

3.1. A class of interference channels with strong interference at one receiver and injective deter-
ministic function at the other.

Definition 1. We say that the interference channel p(y1, y2|x1, x2) has strong interference from the first trans-
mitter if I(X1;Y2|X2) ≥ I(X1;Y1|X2) for every p(x1)p(x2).

The following property is established in [1, p. 137]: if p(y1, y2|x1, x2) has strong interference from the first
transmitter, then

I(Xn
1 ;Y

n
2 |Xn

2 ) ≥ I(Xn
1 ;Y

n
1 |Xn

2 ) (30)
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for every p(xn
1 )p(x

n
2 ) (i.e., the condition tensorizes). Moreover, in any (n, ϵn) code, we have

n(R1 +R2) ≤
n∑

i=1

I(X1i, X2i;Y2i) + nϵn. (31)

Theorem 6. Consider an interference channel where Y1 = g(T,X1) for some function g where T = f(X2) is
a function of X2. Moreover, assume that T = k(Y1, X1) for some function k(·, ·). One is also given that the
interference channel has strong interference from the first transmitter (Definition 1). Then, the capacity region
of this channel is as follows: a rate pair (R1, R2) is achievable if and only if it

R1 ≤ I(X1;Y1|T,Q), (32)

R2 ≤ I(X2;Y2|X1, Q), (33)

R1 +R2 ≤ I(X1, T ;Y1|Q) + I(X2;Y2|X1, T,Q), (34)

R1 +R2 ≤ I(X1, X2;Y2|Q) (35)

R1 +R2 ≤ I(T ;Y1|X1, Q) + I(X1, X2;Y2|T,Q), (36)

2R1 +R2 ≤ I(X1, T ;Y1|Q) + I(X1, X2;Y2|T,Q), (37)

where p(x1, x2, q) = p(q)p(x1|q)p(x2|q) for some Q : |Q| ≤ 6.

Proof. To show the achievability of the region, set U1 = X1 and U2 = T in the Han-Kobayashi inner bound
in Theorem 1. This yields the region given in the theorem’s statement except that the Han-Kobayashi inner
bound has one extra inequality:

R1 + 2R2 ≤ I(X1, X2;Y2|Q) + I(X2;Y2|X1, T,Q) + I(T ;Y1|X1, Q). (38)

However, the inequality (38) is redundant and implied by adding (33) and (35) as

I(X2;Y2|X1, T,Q) + I(T ;Y1|X1, Q) ≥ I(X2;Y2|X1, Q).

The above inequality holds since T is a function of (X1, Y1).
It remains to prove the converse. Note that the cardinality bound onQ comes from the standard Caratheodory-

Bunt arguments, so we need to show that any achievable rate pair satisfies the inequalities for some p(q)p(x1|q)p(x2|q).
To get a matching outer bound, we proceed as follows: for (32) we write

n(R1 − ϵn) ≤ I(Xn
1 ;Y

n
1 |Tn) = H(Y n

1 |Tn) =
∑
i

H(Y1i|Y i−1
1 Tn) ≤

∑
i

H(Y1i|Ti) =
∑
i

I(X1i;Y1i|Ti).

Next, for (33) we write

n(R2 − ϵn) ≤ I(Xn
2 ;Y

n
2 |Xn

1 ) = H(Y n
2 |Xn

1 )−H(Y n
2 |Xn

1 , X
n
2 ) =

∑
i

H(Y2i|Y i−1
2 Xn

1 )−H(Y2i|X1iX2i)

≤
∑
i

H(Y2i|X1i)−H(Y2i|X1iX2i) =
∑
i

I(X2i;Y2i|X1i).

Next, for (34) we write

n(R1 +R2 − ϵn) ≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 |Xn

1 ) +H(Tn|Xn
1 )− I(Tn;Y n

2 |Xn
1 )

= I(Xn
1 ;Y

n
1 ) + I(Tn, Xn

2 ;Y
n
2 |Xn

1 ) + I(Tn;Y n
1 |Xn

1 )− I(Tn;Y n
2 |Xn

1 ) (39)

= I(Xn
1 , T

n;Y n
1 ) + I(Xn

2 ;Y
n
2 |Xn

1 , T
n)

= H(Y n
1 ) +H(Y n

2 |Xn
1 , T

n)−
∑
i

H(Y2i|X1iX2iTi) (40)

≤
∑
i

H(Y1i) +H(Y2i|X1i, Ti)−H(Y2i|X1iX2iTi) (41)

=
∑
i

I(X1i, Ti;Y1i) + I(X2i;Y2i|X1i, Ti) (42)

where (39) follows from H(Tn|Xn
2 ) = H(Tn|Xn

1 , Y
n
1 ) = 0 and (40) and (42) follow from Y1 being a function of

(T,X1).
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The inequality (35) follows from (31). For the inequality (36) we write

n(R1 +R2 − ϵn) ≤ I(Xn
2 ;Y

n
2 ) + I(Xn

1 ;Y
n
1 |Xn

2 )

≤ H(Tn) + I(Xn
2 ;Y

n
2 |Tn) + I(Xn

1 ;Y
n
1 |Xn

2 )

≤ H(Tn) + I(Xn
2 ;Y

n
2 |Tn) + I(Xn

1 ;Y
n
2 |Xn

2 ) (43)

= H(Tn) + I(Xn
1 , X

n
2 ;Y

n
2 |Tn)

= H(Tn) +H(Y n
2 |Tn)−

∑
i

H(Y2i|X1i, X2i, Ti)

≤
∑
i

H(Ti) +H(Y2i|Ti)−
∑
i

H(Y2i|X1i, X2i, Ti)

=
∑
i

I(Ti;Y1i|X1i) + I(X1i, X2i;Y2i|Ti) (44)

where (43) follows from (30) and (44) follows fromH(T |Y1, X1) = H(T |X2) = 0, implying that Ti is independent
of X1i for all i. Finally for (37), observe that

n(2R1 +R2 − ϵn) ≤ I(Xn
1 ;Y

n
1 ) + I(Xn

1 ;Y
n
1 |Xn

2 ) + I(Xn
2 ;Y

n
2 )

(a)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

1 ;Y
n
2 |Xn

2 ) + I(Xn
2 ;Y

n
2 )

= I(Xn
1 ;Y

n
1 ) + I(Xn

1 , X
n
2 ;Y

n
2 )

(b)
= I(Xn

1 ;Y
n
1 ) + I(Xn

1 , X
n
2 ;Y

n
2 |Tn) + I(Tn;Y n

2 )

(c)

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

1 , X
n
2 ;Y

n
2 |Tn) + I(Tn;Y n

1 |Xn
1 )

= I(Xn
1 , T

n;Y n
1 ) + I(Xn

1 , X
n
2 ;Y

n
2 |Tn)

(d)

≤
∑
i

I(X1i, Ti;Y1i) + I(X1i, X2i;Y2i|Ti).

Here, (a) follows from the strong interference condition I(Xn
1 ;Y

n
1 |Xn

2 ) ≤ I(Xn
1 ;Y

n
2 |Xn

2 ) (see (30)), (b) follows
from Tn

2 is a function of Xn
2 , (c) follows from I(Tn;Y n

2 ) ≤ H(Tn) = I(Tn;Y n
1 , Xn

1 ) = I(Tn
1 ;Y

n
1 |Xn

1 ), using the
assumption that H(Tn|Y n

1 , Xn
1 ) = 0 and Tn

1 is independent of Xn
1 . Finally, (d) uses that Y1i is determined by

(X1i, Ti) and the memorylessness of the channel pY2|X1,X2
. □

3.2. Another class of interference channels.

Theorem 7. Consider an interference channel of the form p(y1, y2|x1, x2) = p(y2|x2)p(y1|x1, y2). Set

C1 = max
p(x1),x2

I(X1;Y1|X2 = x2),

C2 = max
p(x2),x1

I(X2;Y2|X1 = x1).

Assume that

C1 = max
p(x1),p(x2)

I(X1, X2;Y1).

Further, assume that for any p(x1)p(x2) we have

I(X2;Y2)

C2
≤ I(X2;Y1|X1)

C1
.

Then, the capacity region of this interference channel is the set of non-negative (R1, R2) satisfying

R1

C1
+

R2

C2
≤ 1.

In other words, the time-division strategy is optimal.
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Proof. Set λ = C1/C2. Observe that

n(R1 + λR2) ≤ I(Xn
1 ;Y

n
1 ) + λI(Xn

2 ;Y
n
2 )

= I(Xn
1 ;Y

n
1 ) + λ

n∑
i=1

I(X2i;Y2i|Y i−1
2 )

≤
n∑

i=1

I(Xn
1 , Y

i−1
1 ;Y1i) + λI(X2i;Y2i|Y i−1

2 )

≤
n∑

i=1

I(Xn
1 , Y

i−1
1 , Y i−1

2 ;Y1i) + λI(X2i;Y2i|Y i−1
2 )

=

n∑
i=1

I(X1i, Y
i−1
2 ;Y1i) + λI(X2i;Y2i|Y i−1

2 ).

The last equality is due to the fact that

(Xn
1 , Y

i−1
1 ) → (X1i, Y

i−1
2 ) → Y1i

forms a Markov chain which follows from the joint decomposition decomposes as p(xn
1 )p(x

n
2 )

∏
i p(y2i|x2i)p(y1i|x1i, y2i).

Let Ui = Y i−1
2 . Therefore, for some p(u, x2)p(x1), we have

R1 + λR2 ≤ I(U,X1;Y1) +
C1

C2
I(X2;Y2|U)

= I(X1, X2;Y1)− I(X2;Y1|X1, U) +
C1

C2
I(X2;Y2|U)

≤ C1,

where the last inequality follows since I(X1, X2;Y1) ≤ C1 and for every u,

−I(X2;Y1|X1, U = u) +
C1

C2
I(X2;Y2|U = u) ≤ 0.

□

3.2.1. An application. As an application of the above theorem, consider an interference channel with binary
inputs X1 and X2 taking values in {0, 1}. We begin with some historical remarks. The class of binary input
deterministic interference channels was originally studied by Etkin and Ordentlich [9]. They established the
capacity region for every such setting, except for the AND-OR setting, i.e. Y1 = X1 ∧X2, and Y2 = X1 ∨X2.
In particular, they solved the problem when Y2 = X2 and Y1 = X1 ⊕X2 where ⊕ denote the sum (modulo 2).
In this paper, we consider a non-deterministic variant of this channel by passing the channel outputs through
erasure channels. This construction is motivated by a similar construction in [4] in the context of broadcast
channels (in [4], outputs of the Blackwell broadcast channel are passed through an erasure channel).

We now give a formal definition. Let Ŷ1 = X1 ⊕X2 and Ŷ2 = X2. The real receivers Y1 and Y2 are obtained
by passing Ŷ1 and Ŷ2 through symmetric BECs, with erasure probabilities ϵ1 and ϵ2 respectively. We have
C1 = 1 − ϵ1 and C2 = 1 − ϵ2 and the two corner points of the capacity region are (R1, R2) = (1 − ϵ1, 0) and
(R1, R2) = (0, 1− ϵ2).

Theorem 8. If ϵ1 > ϵ2, the capacity region is the time-division region, i.e., the set of non-negative rate pairs
(R1, R2) satisfying

R1 +
1− ϵ1
1− ϵ2

R2 ≤ 1− ϵ1.

If ϵ1 ≤ ϵ2, the capacity region is the set of (R1, R2) satisfying

R1 ≤ 1− ϵ1

R2 ≤ 1− ϵ2

R1 +R2 ≤ 1− ϵ1.

Proof. We consider two cases:
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• The first case is when ϵ1 > ϵ2. We need to show that the capacity region is the time-division region. We
apply Theorem 7. First, we couple the outputs of the interference channels such that whenever erasure
occurs in the second channel, erasure also occurs in the first channel. This allows us to assume that the
joint decomposition decomposes as p(x1)p(x2)p(y2|x2)p(y1|x1, y2). Note that

max
p(x1)p(x2)

I(X1, X2;Y1) = (1− ϵ1) max
p(x1)p(x2)

I(X1, X2; Ŷ1) = 1− ϵ1.

Moreover, for any p(x1)p(x2) we have I(X2;Y2) = (1−ϵ2)H(X2) and I(X2;Y1|X1) = (1−ϵ1)H(X2|X1) =
(1− ϵ1)H(X2). Thus,

I(X2;Y2)

C2
≤ I(X2;Y1|X1)

C1

holds with equality.
• Assume that ϵ1 ≤ ϵ2. Then observe that I(X2;Y1|X1) ≥ I(X2;Y2|X1) for any p(x1)p(x2), i.e., strong
interference from the second transmitter (see Definition 1). Strong interference from the second trans-
mitter implies that

R1 +R2 ≤ max
p(x1)p(x2)

I(X1, X2;Y1) = 1− ϵ1.

We also have R1 ≤ C1 = 1− ϵ1 and R2 ≤ C2 = 1− ϵ2. This shows that any achievable rate pair must
satisfy

R1 ≤ 1− ϵ1

R2 ≤ 1− ϵ2

R1 +R2 ≤ 1− ϵ1.

To show that the above region is achievable, take the following auxiliary variables U1 = X1, U2 = X2 in
the Han-Kobayashi bound in Theorem 1.

We remark that in this case, the channel described in the statement of the theorem is a Z-interference
channel (Y2 sees no interference), and we have strong interference at receiver Y1. The capacity region in
this case is known as one can effectively provide X1 for free to receiver Y2 (thereby potentially increasing
the capacity region). Observe that here I(X1;Y2, X1|X2) ≥ I(X1;Y1|X2). Therefore, it becomes a
strong interference channel whose capacity region [10] is obtained by employing MAC decoding at Y1

and Y2. Note that the constraint on R2 is R2 ≤ I(X2;Y2, X1|X1) = I(X2;Y2). Therefore, the capacity
region in this setting is (R1, R2) satisfying

R1 ≤ I(X1;Y1|X2, Q)

R2 ≤ I(X2;Y2)

R1 +R2 ≤ I(X1, X2;Y1|Q)

for some pQpX1|QpX2|Q.

□
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