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Abstract—We derive a genie-based outer bound for the sum
rate of discrete memoryless interference channels. We define a
class of very weak interference channels and study a sub-class
called the binary skewed-Z interference channel. We use the
genie-based outer bound to deduce the sum-capacity in a non-
trivial regime of parameters for this sub-class.

I. INTRODUCTION

The interference channel is a model for communication
of two (or more) pairs of transmitters and receivers over a
common medium. Each sender wants to send a private message
to its intended receiver and one is interested in characterizing
the region of rate-pairs that are simultaneously achievable, i.e.
the capacity region. The characterization of the capacity region
is a classical and fundamental open problem in multi-terminal
information theory. For some background on this problem and
problem definition, please refer to Chapter 6 in [1].
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Fig. 1. Discrete memoryless interference channel

A rate pair (R1, R2) is said to be achievable if there is a se-
quence of encoding schemes such that Pe := Pr{(M1,M2) 6=
(M̂1, M̂2)} → 0 as n → ∞, when the messages (M1,M2)
are distributed uniformly over [1 : b2nR1c]× [1 : b2nR2c]. The
capacity region is the closure of the set of achievable rate pairs
(R1, R2).

In this paper, we restrict ourselves to maximizing the sum-
rate (R1+R2). Some of the technical arguments employed are
novel (example bounding cardinalities of genies, see complete
version [2]) and would be of independent interest.

II. INNER AND OUTER BOUNDS FOR THE SUM-RATE

A. Inner bound

The sum-capacity of interference channel is not known
in general. The best known achievable region is the Han-
Kobayashi inner bound [3], [4], which subsumes all other
known inner bounds. Performing Fourier-Motzkin elimination
on this region will allow us to obtain the corresponding sum-
rate inner bound.

Theorem 1 (Han-Kobayashi sum-rate inner bound). Any non-
negative value R1 +R2 satisfying the constraints

R1 +R2 ≤ I(X1;Y1|U2, Q) + I(X2;Y2|U1, Q) (1a)
R1 +R2 ≤ I(U2, X1;Y1|Q) + I(X2;Y2|U2, U1, Q) (1b)
R1 +R2 ≤ I(U1, X2;Y2|Q) + I(X1;Y1|U2, U1, Q) (1c)
R1 +R2 ≤ I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q) (1d)

for some p(q)p(u1, x1|q)p(u2, x2|q) is achievable.

While there are known outer bounds for the discrete mem-
oryless interference channel, we will focus on our new outer
bound.

B. Genie-based outer bound

In the scalar Gaussian interference channel it was shown
that treating interference as noise is optimal, for sum-capacity,
under a certain weak interference condition (see Chapter 6 in
[1]). The optimality (or converse) was shown using “genie-
aided” receivers. Using standard techniques we extend1 the
arguments to develop a genie-based outer bound and show
that this new outer bound helps us determine the sum-capacity
for certain new classes of discrete memoryless interference
channels.

Theorem 2. Let T1, T2 be any pair of random vari-
ables such that: p(y1, t1|x1, x2) = p(t1|x1)p(y1|t1, x1, x2),
p(y2, t2|x1, x2) = p(t2|x2)p(y2|t2, x1, x2), and the marginals
are consistent with the given channel transition probabili-
ties, i.e. p(y1|x1, x2) = q(y1|x1, x2) and p(y2|x1, x2) =
q(y2|x1, x2). The achievable sum-rate of the discrete mem-
oryless interference channel characterized by q(y1, y2|x1, x2)
can be upper bounded as follows:

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1) + I(X2;T2, Y2)

+ C[I(X2;T2|X1, T1)− I(X2;Y1|T1, X1)]

− I(X2;T2|X1, T1) + I(X2;Y1|T1, X1) (2)
+ C[I(X1;T1|X2, T2)− I(X1;Y2|T2, X2)]

− I(X1;T1|X2, T2) + I(X1;Y2|T2, X2),

where C[I(X2;T2|X1, T1) − I(X2;Y1|T1, X1)] denotes the
upper concave envelope of the function I(X2;T2|X1, T1) −
I(X2;Y1|T1, X1) with respect to product distributions
pa(x1)pb(x2) evaluated at p1(x1)p2(x2). Similarly the term

1A similar argument was independently developed by Khosravi-Farsani and
used in [5, Theorem 1].



C[I(X1;T1|X2, T2) − I(X1;Y2|T2, X2)] denotes the up-
per concave envelope of the function I(X1;T1|X2, T2) −
I(X1;Y2|T2, X2) with respect to to product distributions
pa(x1)pb(x2) evaluated at p1(x1)p2(x2).

Due to lack of space, please check [2] for details.

Remark 1. The following observations are worth noting.
(a) Since every valid pair T1, T2 (or genies) yields an outer

bound, one minimizes the above expression over the choice
of valid genies to obtain the best genie-based outer bound
for the sum-rate. However, since every pair of valid genies
yields an outer bound, it is not necessary to provide a
cardinality bound on the size of the genie that one needs
to consider to make the above region computable.

(b) The above genie-based outer bound recovers the known
result in the scalar Gaussian weak interference regime.
Useful genies [6], [7], [8] turn out to be choices of T1, T2
so that the functions I(X2;T2|X1, T1)−I(X2;Y1|T1, X1)
and I(X1;T1|X2, T2)−I(X1;Y2|T2, X2) become concave
in p2(x2) and p1(x1) respectively. For such genies observe
that the outer bound reduces to

R1 +R2 ≤ max
p1(x1)p2(x2)

I(X1;T1, Y1) + I(X2;T2, Y2),

since the concave envelope of a concave function is itself.
The maximizing distributions (X1∗, X2∗) can be shown to
be Gaussian by an application of EPI.
Within this class of genies where Gaussian signaling is
optimal, smart genies [6] ensure that Xi∗ → Yi → Ti, i =
1, 2 becomes Markov. Therefore the presence of useful and
smart genies reduces the upper bound to

R1 +R2 ≤ I(X1∗;Y1∗) + I(X2∗;Y2∗),

which is achievable by treating interference as noise.
(c) Concave envelopes are just a compact way of representing

maximizations over auxiliary random variables.

III. VERY WEAK INTERFERENCE CLASS OF INTERFERENCE
CHANNELS

In this section we define the very weak interference class,
bearing in mind that our interest is in computing the sum-
capacity. Our definition (and nomenclature) is motivated in
part by the definition of very strong interference channel [9]
presented below.

Definition 1. A DM-IC is said to have very strong interference
if

I(X1;Y1|X2) ≤ I(X1;Y2),

I(X2;Y2|X1) ≤ I(X2;Y1)

for all p1(x1)p2(x2).

Remark 2. In layman’s terms a phrasing of the definition is
the following: If the interference at the unintended receiver is
so strong that one can decode the interfering signal treating
ones own signal as noise at a higher rate than the rate at which
the true receiver can decode its intended signal even if some

genie provides the interfering signal, then the interference is
said to be very strong. The optimal strategy indeed turns out
to be to decode the interfering signal first and then decodes
ones intended signal.

In a very weak interference setting one expects the intended
receiver to treat the interference signal as noise. Additionally,
the true receiver should not even try to decode any part of the
interfering signal. Motivated by this intuition, we make the
following definition.

Definition 2. A discrete memoryless interference channel
characterized by the transition matrix q(y1, y2|x1, x2) is called
a very weak interference channel if for every pair of auxiliaries
(U1, U2) such that the joint probability distribution takes
the form p1(u1, x1)p2(u2, x2)q(y1, y2|x1, x2) the following
inequalities hold:

I(U1;Y1) ≥ I(U1;Y2|X2)

I(U2;Y2) ≥ I(U2;Y1|X1). (3)

Remark 3. The following remarks capture some of the intu-
ition as well as limitations of the above definition of very weak
interference channels. It would be nice to formally prove this
in the sense of [10]. Such a formal proof seems currently out
of reach.

1) The term I(U1;Y1) captures the rate of information from
U1 (a part of X1 or a cloud centre among Xn

1 sequences)
to Y1 when Y1 tries to decode U1 while treating the
rest as noise. However, the receiver Y1 could do some
interference cancellation of part of X2 before decoding
U1; hence this is an underestimate of the information rate
from U1 to Y1.
The term I(U1;Y2|X2) captures the rate of information
from U1 to receiver Y2, after Y2 has (magically) cleaned
any effect from X2. This is the maximum rate from U1

that receiver Y2 can hope to decode.
Thus the direction of the inequality states that if U1 (part
of X1) is to be decoded at Y2 then this imposes a penalty
on the rate from U1 to Y1 even under the most favorable
(unfavorable) decoding scenario at Y2 (Y1). Thus if one is
interested in maximizing R1 +R2 then one would expect
that Y2 should not attempt to decode any part of X1.

2) Note that if one is interested in optimizing λR1 + R2,
λ 6= 1, then one must use a different criterion than the
one given above to expect treating interference as noise
to remain optimal.

Proposition 1. The conditions given in (3) are equivalent
to the following conditions: for a fixed p2(x2) the function
I(X1;Y1)−I(X1;Y2|X2) is concave in p1(x1) and for a fixed
p1(x1) the function I(X2;Y2) − I(X2;Y1|X1) is concave in
p2(x2).

Proof. Since U1 → X1 → (X2, Y1, Y2) is Markov observe
that

I(U1;Y1) ≥ I(U1;Y2|X2) ⇐⇒
I(X1;Y1)− I(X1;Y2|X2) ≥ I(X1;Y1|U1)− I(X1;Y2|U1X2).



The right hand side is clearly equivalent to concavity w.r.t.
p1(x1).

Proposition 2. Let SRHK(q) denote the maximum sum-rate
achievable using the Han-Kobayashi encoding strategy. Under
the very weak interference channel definition in (3), the Han-
Kobayashi sum-rate reduces to

SRHK(q) = max
p1(x1)p2(x2)

I(X1;Y1) + I(X2;Y2).

Proof. Clearly by setting Q = U1 = U2 = 0 the trivial random
variable (i.e. by treating interference as noise) one can indeed
achieve the above sum-rate using the Han-Kobayashi scheme.

To observe the reverse direction consider equation (1d) and
note the following

I(U2, X1;Y1|U1, Q) + I(U1, X2;Y2|U2, Q)

(a)
= I(U2, X1;Y1|Q)− I(U1;Y1|Q)

+ I(U1, X2;Y2|Q)− I(U2;Y2|Q)

= I(X1;Y1|Q) + I(U2;Y1|X1Q)− I(U2;Y2|Q)

+ I(X2;Y2|Q)− I(U1;Y1|Q) + I(U1;Y2|X2, Q)

(b)

≤ I(X1;Y1|Q) + I(X2;Y2|Q).

Here (a) is a consequence of the Markov chains U1 → X1 →
(U2, X2, Y1, Y2) and U2 → X2 → (U1, X1, Y1, Y2) which
hold conditioned on Q = q. Inequality (b) is an immediate
consequence of our definition of very weak interference chan-
nel. Since the average over Q is dominated by the maximum
value the lemma is established.

IV. BINARY SKEWED-Z INTERFERENCE CHANNEL

In this section we introduce a class of channels that satisfy
the very weak interference condition for a certain set of
parameters. We focus on the sum-rate capacity of this class
of channels under very weak interference for the rest of the
article.
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Fig. 2. Binary skewed-Z interference channel (BSZIC)

Figure 2 depicts the transition probabilities of the direct
channels for different values of interfering signal. We call such
a channel to be binary skewed-Z interference channel (BSZIC).

Proposition 3. The binary skewed-Z interference channel
shown in Figure 2 is a very weak interference channel2 if
and only if 0 ≤ p+ q ≤ 1.

2For the symmetric case, i.e. p = q, the condition reduces to p ≤ 1
2

and
was derived by Yin Zi as part of a class project in 2011.

Proof. From Proposition 1, it suffices to determine the con-
ditions under which I(X1;Y1)− I(X1;Y2|X2) is concave in
p1(x1) for all fixed p2(x2). Let H(x) = −x log2 x − (1 −
x) log2(1−x) denote the binary entropy function. Let P(X2 =
0) = a and P(X1 = 0) = x. We need to determine the
values of p, q ∈ [0, 1] with which I(X1;Y1) − I(X1;Y2|X2)
is concave in x for all a ∈ [0, 1].

I(X1;Y1)− I(X1;Y2|X2)

= H(x(1− āp))− xH(1− āp)− āH(xq) + āxH(q),

where ā = 1− a. Note that the second and the last terms are
linear in x. After taking second derivative, one could see that
the concavity of the above expression w.r.t x is equivalent to
showing that

1− āp
1− x(1− āp)

≥ āq

1− xq
,

i.e. (1− āp)(1− xq) ≥ āq(1− x(1− āp)).

The above condition must hold for every x ∈ [0, 1]. Since both
sides of the inequality are linear in x, it suffices to verify only
at x = 0 and x = 1. Substituting, we obtain the following two
conditions, respectively.{

1− āp ≥ āq,
(1− āp)(1− q) ≥ pqā2.

Both conditions have to be satisfied simultaneously for all a ∈
[0, 1]. It is easy to check that this is equivalent to p+q ≤ 1.

Remark 4. Scalar Gaussian Z-interference channels with
crossover gains a ≤ 1, b = 0 satisfy the very weak interference
condition and here it is known [11], [12] that the optimal sum-
rate is attained by treating interference as noise. However, we
are not able to isolate any non-trivial subset of parameters
with crossover gains a > 0, b > 0 that satisfies the very weak
interference condition.
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Fig. 3. Regime of parameters where the sum-capacity is established for the
Skewed-Z interference channel

Theorem 3. Treating interference as noise is sum-rate optimal
for BSZIC with channel parameters (p, q) satisfying

0 ≤ p ≤ 1

3
,

p ≤ q ≤ 1− p
1 + 3p

or
0 ≤ q ≤ 1

3
,

q ≤ p ≤ 1− q
1 + 3q



The regime of parameters (as a subset of the weak-interference
regime) is shown in Figure 3.

Proof. Let x = Pr(X1 = 0), y = Pr(X2 = 1). Consider
binary genies T1, T2 with the following joint distribution:

X1 X2 Y1 T1 Probability
0 0 0 0 x(1− y)(1− p)a
0 1 0 0 xy(1− p)a
0 0 0 1 x(1− y)((1− p)(1− a) + p)
1 0 1 1 (1− x)(1− y)
0 1 0 1 xy(1− p)(1− a)
0 1 1 1 xyp
1 1 1 1 (1− x)y.

X1 X2 Y2 T2 Probability
1 1 1 0 (1− x)y(1− q)c
0 1 1 0 xy(1− q)c
1 1 1 1 (1− x)y((1− q)(1− c) + q)
0 1 0 1 xyq
1 0 0 1 (1− x)(1− y)
0 1 1 1 xy(1− q)(1− c)
0 0 0 1 x(1− y).

Set

a =
1 + q

2(1− pq)
, c =

p2 + pp̄ā

q̄(p2 + pp̄ā+ p̄ā)
.

One can verify (see [2] for details) that genies T1, T2 satisfy
the conditions of Theorem 2; the functions

I(X2;T2|X1, T1)− I(X2;Y1|T1, X1),

I(X1;T1|X2, T2)− I(X1;Y2|T2, X2)

are concave in p1(x1)p2(x2); and further X1 → Y1 → T1 and
X2 → Y2 → T2 are Markov. This would then reduce the sum
rate outer bound provided by Theorem 2 to that achievable
by treating interference as noise. (This proof structure is very
similar to the identification of smart and useful genies in the
Gaussian interference channel.)

Remark 5. In [2] we show that the above conditions on
(p, q) are necessary for the existence of genies such that the
difference of mutual information terms are concave and the
Markov chain holds.

A. More on the genie-based outer bound

In this section, we analyze the necessary conditions3 when
the genie-based outer bound for the skewed-Z interference
channel reduces to the sum-rate yielded by treating interfer-
ence as noise. Due to lack of space, some of the proofs are
omitted here and the reader may refer [2] for the details.
However since our setting is a discrete setting we are able to
perform a much more exhaustive analysis of the bound than
that possible in the Gaussian setting.

For a given (valid) pair of genies (T1, T2) consider the sum-
rate outer bound given by Theorem 2. Further let p∗1(x1)p∗2(x2)

3Note that the previous result only dealt with the sufficient conditions.

be a maximizing product distribution (i.e. the product distri-
bution that yields the outer bound for this particular choice of
genies). For the expression in (2) to reduce to

I(X1;Y1) + I(X2;Y2)

at p∗1(x1)p∗2(x2), it is easy to see that the following equalities
must hold:

I(X1;T1|Y1) = 0,

I(X2;T2|Y2) = 0,

C[I(X2;T2|X1, T1)− I(X2;Y1|T1, X1)]

= I(X2;T2|X1, T1) + I(X2;Y1|T1, X1),

C[I(X1;T1|X2, T2)− I(X1;Y2|T2, X2)]

= I(X1;T1|X2, T2) + I(X1;Y2|T2, X2).

However these inequalities need to hold only at the maximiz-
ing distribution p∗1(x1)p∗2(x2). Further if such genies exist, by
virtue of the fact that the expression I(X1;Y1) + I(X2;Y2)
at p∗1(x1)p∗2(x2) yields an outer bound to the sum-rate, it
must also hold that p∗1(x1)p∗2(x2) is also a maximizer of the
expression I(X1;Y1)+I(X2;Y2) over all product distributions
(since the maximum of I(X1;Y1)+I(X2;Y2) is an achievable
sum-rate).

We first restrict our attention to genies (taking values in
some finite alphabet) such that the Markov chains X1 → Y1 →
T1 and X2 → Y2 → T2 hold at some distribution P(X1 =
0) = x∗ and P(X2 = 1) = y∗. One can easily verify that for
the Markov chains to hold, the probability distributions must
take the form

X1 X2 Y1 T1 Probability
0 0 0 i x∗(1− y∗)((1− p)ai + pbi))
1 0 1 i (1− x∗)(1− y)bi
0 1 0 i x∗y∗(1− p)ai
0 1 1 i x∗y∗pbi
1 1 1 i (1− x∗)y∗bi

for some 0 ≤ ai, bi ≤ 1. A similar structure also holds for the
distribution of (X1, X2, Y2, T2). An interesting observation is
that if the Markov chain holds for some x∗, y∗ > 0 then the
Markov condition continues to hold for any product distri-
bution. This is a chance observation (peculiar to the Binary
skewed-Z interference channel) which greatly simplified our
analysis.

Among the class of genies that satisfy the Markov chain,
one is further interested in a subclass for which the upper
concave envelopes of the differences of mutual information
match the function value at p∗1(x1)p∗2(x2). To this end, define
f(x, y) as

I(X2;T2|X1, T1)− I(X2;Y1|T1, X1)|P(X1=0)=x,P(X2=1)=y.

Expanding the terms and noting the linearity in x can express
f(x, y) = (1 − x)g0(y) + xg1(y), where g0(y) = f(0, y) is
a concave function of y and g1(y) = f(1, y) is in general
neither convex nor concave in the entire interval y ∈ [0, 1].

The following proposition aids in our computation of the
upper concave envelope of f(x, y).



Proposition 4. Let C[f ](x, y) denote the upper concave enve-
lope of f(x, y) over the space of product distributions notated
by P(X1 = 0) = x,P(X2 = 1) = y. Then

C[f ](x, y) = (1− x)C[g0](y) + xC[g1(y)],

where C[g0](y),C[g1](y) denotes the upper concave envelope
ofs g0(y), g1(y) respectively over y ∈ [0, 1].

Proof. Consider a maximizing convex combination: i.e. a
probability vector {αi} and points (xi, yi) ∈ [0, 1] × [0, 1]
such that

∑
i αif(xi, yi) = C[f ](x, y). We know that∑

i

αixiyi = xy,
∑
i

αixi = x,
∑
i

αiyi = y.

Obtain a new convex combination as follows: with probabil-
ity αi(1−xi) choose (0, yi) and with probability αixi choose
(1, yi). Observe that∑

i

αi(1− xi)f(0, yi) + αixif(1, yi)

=
∑
i

αi((1− xi)f(0, yi) + xif(1, yi))

=
∑
i

αif(xi, yi) = C[f ](x, y).

Since
∑
i
αi(1−xi)
(1−x) = 1 and

∑
i
αi(1−xi)
(1−x) yi = y we have∑

i αi(1 − xi)f(0, yi) ≤ (1 − x)C[g0](y). Similarly we
have αixif(1, yi) ≤ xC[g1(y)]. Thus C[f ](x, y) ≤ (1 −
x)C[g0](y) + xC[g1(y)].

The other direction is immediate as one can always take
the convex combination that achieves C[g0](y) and the con-
vex combination that achieves C[g1](y) to obtain a value
(1− x)C[g0](y) + xC[g1(y)].

For the binary skewed-Z interference channel, g0(y) is con-
cave and hence C[g0](y) = g0(y). We will seek to answer the
following question: In the class of genies such that the Markov
chain holds, are there genies such that C[g1(y)] = g1(y) at
y∗, the maximizing distribution? If the answer is affirmative
whenever p + q ≤ 1, then the genie-based outer bound will
yield the sum-capacity in the entire weak interference regime
of parameters. However, we shall see that this is not the case.

1) Genie approach in an intermediate regime: We restrict
our attention to the symmetric case where p = q. When p =
q ≤ 1

3 we observe that there are genies for which g1(y) is
concave when y ∈ [0, 1].

Now we consider the range 1
3 ≤ p = q ≤ 1

2 . Suppose we
restrict ourselves to genies with binary alphabets, then g1(y)
displays an interesting behavior. The function is concave in
some interval [0, ŷ] and convex in the remainder. Hence the
concave envelope of g1(y) matches the function in the interval
[0, y†] (y† ≤ ŷ) and follows the tangent to the curve g1(y) (at
y†) in the interval [y†, 1]. Here y† is the unique point in [0, 1]
such the tangent to the curve g1(y) at y† passes through g1(1)
when y = 1.

Numerical simulations indicate that there are such genies
when 0 ≤ p = q ≤ 0.39. Since we have very explicit

expressions, it is not difficult to convert the simulations to
a complete argument, but we refrain from doing so because
of the following negative result.

Proposition 5. For the binary skewed-Z interference channel
when p = q = 1

2 , the genie-based outer bound is strictly
greater than treating interference as noise inner bound.

Proof. The proof essentially follows by showing that for any
set of genies (with finite but arbitrary cardinalities) such that
the Markov condition holds, the function g1(y) is convex.
This precludes the concave envelope to match the function
st p∗1(x1)p∗2(x2). See [2] for details.

CONCLUSION

We defined a very weak interference condition and showed
that a subset of parameters of a binary skewed-Z interference
channel belongs to this class. We developed a genie-based
outer bound for the sum-rate of discrete memoryless interfer-
ence channels and showed that treating interference as noise
is optimal for a subset of parameters of the binary skewed-
Z interference channel in the very weak interference regime.
We also showed that the genie-based outer bound will not
reduce to the sum-rate yielded by interference as noise in
the entire very weak interference regime. This work shows
that employing genies as a mathematical gadget for proving
converses remains largely an unexplored area.
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